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ABSTRACT

One of the main approaches to system identification of networks of
time series or signals is conditional independence graphical (CIG)
modeling. In the Gaussian case, the conditional dependence struc-
ture of the nodal time series is determined by the location of zeros
in the precision matrix (inverse covariance matrix). And this deter-
mines the graph structure of the network. Despite the many applica-
tions of CIG models, the theory and algorithms have so far only dealt
with networks of univariate or scalar signals. But in most applica-
tions the nodes carry multivariate or vector signals. Here we extend
CIG modeling to handle such data by posing a group l0 sparse pe-
nalised block precision matrix estimation problem. We develop a
double cyclic descent algorithm to solve it. And we compare the
method with a group l1 penalised alternative in simulations.

Index Terms— sparsity, l0, precision matrix

1. INTRODUCTION

Three kinds of graphical modeling of network time series data are
currently in play.

Firstly a group of methods which originated in the sociology
literature and includes the explorarory techniques of graph analy-
sis involving characteristics such as node degree, centrality, small
world networks etc but also the formal confirmatory methods of ex-
ponential random graph models (ERGMs) and stochastic block mod-
els (SBMs): see [1] and references therein.

Secondly, conditional independence graphical (CIG) models,
developed in the statistics literature [2, 3]. In the Gaussian case they
are characterised by zeros in the precision or inverse covariance ma-
trix. And these zeros determine the graph structure of the network.
This has led to a growing literature on sparsity penalised precision
matrix estimation e.g. [5],[10],[12],[23].

Thirdly, graph signal processing which so far emphasizes the
extension of Fourer techniques to graphs of univariate signals [4].

In this paper we are concerned with CIGs. There is certainly
a well developed CIG literature and many successful applications
and CIG models continue to attract considerable attention. How-
ever, with a few exceptions, the development so far has been only
for univariate CIGs (uvCIGs) i.e. networks of univariate or scalar
nodal signals. But in practice most networks carry vector or multi-
variate signals. We purse then the development of multivariate CIG
(mvCIG) modeling.

So far there seem to be only three pieces of work tackling the
mvCIG problem. The first seems to be [17], which develops a group
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l1 penalised likelihood method. The group sparsity penalty is neces-
sary to handle the multivariate nature of the nodal time series data.
This work was followed (and referenced by) [18], which developed a
specialised tree-structured penalty approach. Independently of these
two works is that of [19], which however does not use sparsity.

In this work we pursue a group lo penalised approach. The group
or vector l0 penalty delivers much greater sparsity than the l1 penalty
at the cost of non-convexity.

The remainder of the paper is organised as follows. In section
2 we formulate the penalised problem. In section 3 we develop the
algorithm. In section 4 we provide comparative simulations. Section
5 contains conclusions.

2. PRELIMINARIES

The mvCIG problem arises as follows. Consider a network with p
nodes, with node i having a di dimensional time series xi,t, t =
1, · · · , T . Stacking these nodal vector time series together at time t
gives a network vector time series xt of dimension d =

∑p
i=1 di.

We assume xt ∼ N (µd×1,Σd×d), and µ = 0 without loss of
generality. Σ is thus a block covariance matrix with blocks of di-
mensions di × dj .

The precision matrix is Ωd×d = Σ−1 with corresponding
blocks Ωij ∈ Rdi×dj . In this case, if Ωij = 0di×dj , where i 6= j,
then the vector white noise time series xi,t and xj,t are condition-
ally independent given the all other vector time series at all the other
nodes. Hence there is no link between nodes i and j in the corre-
sponding undirected graph. This crucial result, which determines
the graph structure of the network, well known in the univariate case
[16, 20, 3, 2], can be proved in the multivariate case in a similar way.

In order to obtain a block sparse precision matrix Ωd×d we posit
the following group l0 Penalized Log-Likelihood (l0-PLL) criterion:

F (Ω) = − log det(Ω) + tr(SΩ) + λ
∑
i6=j

I(Ωij 6= 0) (2.1)

where Sd×d = 1
T

ΣT1 xtx
T
t is the sample covariance matrix and I(·)

is the indicator function, i.e.

I(Ωij 6= 0) =

{
0 if Ωij = 0
1 if otherwise

and λ > 0 is a scalar (tuning) parameter. It is crucial to understand
that all entries in matrix Ωij will be zeroed together.

The group l0 penalty is a sparsity inducing norm and the log-
likelihood promotes goodness-of-fit.
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2.1. l0 vs. l1 Sparsity Penalty

The penalty in (2.1) is known as the group l0 penalty because it pe-
nalises groups (blocks) of the matrix variable and so causes all the
entries in a block to be zeroed. It is non-convex so that (2.1) is non-
convex. A convex approximation of the l0 function is the l1 norm.
In this setting, we have the corresponding group l1 penalty, defined
as
∑
i 6=j ‖Ωij‖F , where ‖ · ‖F is the Frobenius norm [17, 18].

In the sparse univariate precision matrix literature, e.g., [12, 13,
14, 15], it was shown that the l0 penalty results in a less biased esti-
mator than the l1 penalty. We will demonstrate the same behaviour
in the multivariate case.

3. ALGORITHM DEVELOPMENT

The algorithm for solving either the group l1-PLL or l0-PLL prob-
lem proceeds in two stages. The first stage is a Block-wise cyclic
descent (BCD) procedure, where one optimises over one block of
the matrix Ω at a time. The BCD reduces the problem of optimis-
ing over a matrix in (2.1) to a problem of optimising over a vector.
The second stage does the latter optimisation also using CD. Our al-
gorithm differs from that in [17] precisely because we use a second
stage of CD. We now describe the two stages in detail.

3.1. The Block-wise Cyclic Descent (BCD) Stage

Letting Ω denote the current iterate, the new blocks to be updated
are identified and the rest of the matrix entries are fixed. To describe
the updating procedure we have to deal with permutations of Ω and
S, which have the identified target block Ωa placed at the end i.e.

Ωπ =

[
Ωo
BT
a

Ba

Ωa

]
,Sπ =

[
So
SToa

Soa
Sa

]
(3.1)

where Ba and Soa are column matrices. Matrix Ωa has dimension
da×da, and Ba and has dimension d−a×da, where d−a = d−da.
In particular

Ba =


B1a

B2a

...
B(p−1)a


where Bia has dimensions di × da for 1 ≤ i ≤ p− 1.

By partitioned determinants we get

det(Ωπ) = det(Ωo) det(Ωa −BT
aΩ−1

o Ba)

and also

tr(SΩπ) = tr(SoΩo) + 2 tr(SToaBa) + tr(SaΩa)

Since F |Ω,S = F |Ωπ,Sπ , we have

F (Ω) = − log det(Ωo)− log det(Ωa −BT
aΩ−1

o Ba)

+ tr(SoΩo) + 2 tr(SToaBa) + tr(SaΩa)

+ λ
∑
i6=j

I(Ωo,ij 6= 0) + 2λ
∑
i

I(Bia 6= 0)

where Ωo,ij is the ij-th block in sub-matrix Ωo. Therefore, to update
the a-th block we fix Ωo and need to optimise

Fa = − log det(Ωa −BT
aΩ−1

o Ba) + 2 tr(SToaBa)

+ tr(SaΩa) + 2λ
∑
i

I(Bia 6= 0) (3.2)

We now compute the perturbation in Fa induced by a perturbation
in Ωa

δFa = −tr(∆−1
a δΩa) + tr(SaδΩa)

∆a = Ωa −BT
aΩ−1

o Ba

The perturbation in Fa must vanish for arbitrary δΩa, leading to the
Euler equation

∆−1
a = Sa ⇒ ∆a = S−1

a

which implies
Ωa = BT

aΩ−1
o Ba + S−1

a (3.3)

If Ω � 0, then we must have Ωo � 0, which in turn implies Ω−1
o �

0. Then, it can easily be shown that BT
aΩ−1

o Ba � 0. Hence, due to
the fact that S � 0 and S−1

a exists, we must have S−1
a � 0. As a

result, Ωa � 0.
Notice that in (3.3) we need to invert matrices Ωo and Sa. This

can be done in low dimensions using Cholesky factorization. For
large dimensions, iterative methods such as Conjugate Gradients
(CG) are preferred, because the cost of each iteration is proportional
to the number of non-zeros in the matrix. Thus the block sparse
structure of Ωo guarantees a smaller number of non-zeros.

To update Ωa in (3.3), function Fa now needs to be minimized
with respect to Ba.

3.2. The Cyclic Descent (CD) Stage for l0-PLL

Substituting (3.3) back in Fa in (3.2) gives (after dropping superflu-
ous terms)

Fa = tr(SaBT
aΩ−1

o Ba) + 2 tr(SToaBa) + 2λ
∑
i

I(Bia 6= 0)

To carry out the optimization we convert the above to vector form,
via the two well known identities

tr(ABT ) = vecT (A)vec(B)

tr(ABCD) = vecT (B)(C⊗A)vec(DT )

where vec(M) converts matrix M into a column vector, and ⊗ is
the Kronecker product. So, introduce vectors

βa = vec(Ba) and σoa = vec(Soa)

then

tr(BaS
T
oa) = βTa σoa

tr(SaBT
aΩ−1

o Ba) = tr(Ω−1
o BaSaB

T
a )

= βTa (Sa ⊗ Ω−1
o )βa

So, the above Fa becomes

Fa = βTa M−1
o βa + 2βTa σoa + 2λ

∑
i

I(βia 6= 0) (3.4)

where Mo = S−1
a ⊗ Ωo � 0.

Fa in (3.4) can now be optimised with respect to βa with the
CD algorithm, where the components βia in βa are updated for each
i = 1, . . . , p− 1, 1, . . . , p− 1, . . .. So, to obtain the update for βia
we partition βa into two vector components, i.e. we let

βa =

[
βia
β−ia

]
(3.5)
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where vector β−ia represents all components in βa which do not
belong to βia. Then, we need to correspondingly partition M−1

o =
Sa ⊗ Ω−1

o . Since M−1
o is a Kronecker product of two positive def-

inite matrices it is itself positive definite. Hence, we can consider
the Cholesky decomposition of M−1

o , in which case M−1
o = LTL,

where L is lower triangular. We can now partition L according to
(3.5) by letting Lia denote all the columns in L that correspond to
the entries in βa that form βia. In this case, we let L−ia denote the
rest of the columns in L. Then, note that

βTa M−1
o βa = [βTia,β

T
−ia]

[
LTia
LT−ia

]
[Lia,L−ia]

[
βia
β−ia

]
= [βTia,β

T
−ia]

[
LTiaLia
LT−iaLia

LTiaL−ia
LT−iaL−ia

] [
βia
β−ia

]
in which case (3.4) reduces to (after dropping terms that do not de-
pend on βia)

Fia = βTiaL
T
iaLiaβia + 2zTiaβia + 2λI(βia 6= 0) (3.6)

where zia = LTiaL−iaβ−ia + σoa,i and σoa,i is a sub-vector of σoa
whose entries correspond to the entries in βa that form βia. The
minimiser of Fia is either 0, in which case, Fia = F 0

ia = 0, or is
not 0 and hence is the minimiser of

βTiaL
T
iaLiaβia + 2zTiaβia + 2λ (3.7)

So, by differentiating (3.7) and equating to 0 gives LTiaLiaβia +
zia = 0. Solving for βia gives the minimiser

β?ia = −(LTiaLia)−1zia (3.8)

Substituting (3.8) back into (3.7) gives

F ?ia = −zTia(LTiaLia)−1zia + 2λ

Therefore, the minimiser of Fia in (3.6), denoted by β+
ia is 0 if

F 0
ia ≤ F ?ia or β?ia otherwise, i.e.

β+
ia = β?ia I(zTia

(
LTiaLia)−1zia > 2λ

)
(3.9)

CD Algorithm for Minimising Fa in (3.4)

Input: Initial βa, λ > 0, and let i = 1.
01. Compute the optimal β+

ia in (3.9).
02. Update βa by updating βia with β+

ia.
03. If i < p− 1, then i = i+ 1. Otherwise i = 1. Go to 01.

3.3. Algorithm Statement

The algorithm for minimising the group l0 penalised log-likelihood
criterion F in (2.1) is now given below.

Algorithm for Minimising F (Ω) in (2.1)

Input: Dimensions d1, . . . , dm, initial Ωd×d � 0, where d =∑m
i=1 di, and λ > 0. Let a = 1.

01. Partition Ω as shown in (3.1), and identify the new target blocks
in Ω, denoting them by

Ωa ∈ Rda×da and Ba ∈ Rd−a×da

02. Using the current βa = vec(Ba) as the initialiser, apply the
CD algorithm from Section 3.2 to minimise Fa in (3.4). Denote the
minimiser by β+

a , and convert it to matrix form B+
a = mat(β+

a ).
Replace Ba in Ω with the update B+

a .
03. Replace Ωa in Ω with the update

Ω+
a = B+

a
T

Ω−1
o B+

a + S−1
a

04. If a = m, then let a = 1. Otherwise let a = a+ 1.
05. Go to 01.

Theorem 1 Let Ωd×d � 0 denote the current iterate of the inverse
covariance in the above algorithm, and let Ω+ denote the new iterate
with updated blocks Ωa and Ba. Then

(a) Ω+ � 0

(b) F (Ω+) ≤ F (Ω)

Proof. (a): since the update Ω+
a > S−1

a is positive definite, so is
Ω+. (b): follows since each cycle involves a minimization.

Remark 1 (Regarding the group l1-PLL algorithm) The algo-
rithm for minimising the group l1-PLL criterion is very similar to
the one above. The difference is in the CD procedure for updating
βa. Namely, the update βia in the CD method is a minimiser of Fia
in (3.6), where the indicator function I(βia 6= 0) is replaced with
‖βia‖2. As a result, the CD update in (3.9) is replaced with

β+
ia = β•ia I

(
−zTiaβ

•
ia

‖β•ia‖2
> λ

)
where β•ia 6= 0 is a solution of the equation1

LTiaLiau + zia + λ
u

‖u‖2
= 0

which can be solved, for example, using a fixed point method, i.e.
uk+1 = −(LTiaLia)−1(zia + λ uk

‖uk‖2
), where

u0 = −(LTiaLia)−1zia.

4. SIMULATIONS

Here we use a simulation to compare the group l0 and l1 PLL inverse
covariance estimators.

Five blocks (groups) of different size are considered i.e.
[d1, d2, d3, d4, d5] = [6, 9, 15, 3, 9]. As a result, d =

∑
i di = 42.

The ground truth Ωd×d � 0 is constructed as follows: for each di
we generate a sparse matrix Udi×di with non-zeros equal to±1, set
Ωii to be UTU and then add a diagonal term to ensure Ωii � 0. In
the resulting Ω we then insert sparse off-diagonal blocks Ω31, Ω42

and Ω51, as well as their corresponding transposes. A diagonal term
is added to the final Ω to ensure positive definiteness. The condition
number of Ω is approximately 65, so Ω is well conditioned.

Given Ω, we draw n = 10 × d samples ∼ N (0,Ω−1) to con-
struct 30 instances of the sample covariance matrix S.

Since in practice we do not know Ω, the tuning parameter λ > 0
must be selected using a model selection technique. Here we choose

1obtained by differentiating the new Fia (with the l2 penalty) and setting
the result to zero.
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λ such that the corresponding algorithm solution Ω̂ minimises the
BIC criterion [17]

BIC(λ) = tr(SΩ̂)− log det(Ω̂)

+
∑
i<j

I(Ω̂ij 6= 0)didj
log(n)

n

In our simulations we found that the λ minimising BIC was very
close to the λ that minimising the Kullback-Leibler (KL) loss – e.g.
[21, 22, 23, 24, 25, 13, 14, 26, 15] used when computing the oracle
precision matrix estimator.

Fig. 1. Comparing Ω and the BIC optimal Ω̂ obtained by minimising
the group l0-PLL criterion (using one of the 30 sample S).

Fig. 2. Comparing Ω and the BIC optimal Ω̂ obtained by minimising
the group l1-PLL criterion (using the same S as for figure 1).

In figure 1 we see that all of the off-diagonal blocks (blue) in Ω
have been correctly identified. Also the non-zeros in the estimated
off-diagonal blocks seem to match the corresponding non-zeros in
Ω.

In figure 2 we see that only the off-diagonal block Ω42 has been
identified. However, the non-zeros in Ω̂42 poorly match the corre-
sponding non-zeros in Ω42.

Note that the reconstructions in figure 1 and 2 represent the gen-
eral result (over the 30 instances considered).

Fig. 3. Plotting the BIC criterion vs. λ. The group l0 and l1 estima-
tors in figure 1 and 2 are obtained with the λ that respectively gives
the minimum BIC value in this figure.

5. CONCLUSION

We addressed the multivariate (multi-attribute) conditional inde-
pendence graphical modelling problem by proposing a novel block
cyclic descent algorithm for minimising the group l0 penalized log-
likelihood. We compared the method with a group l1 penalised
alternative in simulations, and found that the group l0 penalisation
can yield superior estimates.
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