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ABSTRACT
In recent years, data driven methods have been successfully
used for analyzing multi-subject functional magnetic res-
onance imaging (fMRI) datasets. These methods attempt
to learn shared spatial activation maps (SM) or voxel time
courses (TC) from temporally or spatially concatenated fMRI
datasets respectively. Most of the methods proposed so far do
not distinguish whether a particular SM/TC is a group level
component or only present in a certain subject dataset. In this
paper we present a new two stage algorithm which aims to
separate the joint and sub-specific information from the tem-
porally concatenated multi-subject datasets. The proposed
method is based on the singular value decomposition (SVD)
and penalized rank-one matrix approximation. Simulation
experiments are used to demonstrate this ability of the pro-
posed algorithm followed by validation on real experimental
task-fMRI datasets.

Index Terms— Functional magnetic resonance imaging
(fMRI), data driven methods, temporal concatenation, multi-
subject analysis.

1. INTRODUCTION

In many signal and image processing applications, data driven
methods have been used extensively leading to state of the art
performance in face recognition [1], image denoising [2, 3],
and fMRI data analysis [4–9] to name a few. For example,
these methods aim to learn an overcomplete basis set (a dic-
tionary) such that each signal can be well represented by
using only a few of the basis functions (atoms). For most
this learning process is performed in two steps; keeping the
basis constant, a linear approximation is performed for the
observed signal, followed by updating the basis to minimize
some cost function while fixing parameters of the linear con-
straint. These two steps are alternated till a stopping criteria
is satisfied.
Data driven methods with sparsity constraint (dictionary
learning) have been used for single subject [5–8, 10], as well

This work was supported by the Australian Research Council through
Grant FT. 130101394

as, [11–15] multi-subject fMRI data analysis. In this context,
a single subject fMRI dataset is decomposed into a factor
model comprised of learned basis and matrix of coefficients
such that each voxels’ timecourse (TC) can be represented
by the linear combination of a few vectors from the learned
basis. In these formulations, each vector of the learned ba-
sis corresponds to a specific brain temporal dynamic with
the corresponding coefficient vector (row of the coefficient
matrix) representing the spatial activity map. Typically for
multi-subject (MS) fMRI analysis, dictionary learning is per-
formed using temporally concatenated datasets resulting in
group level spatial maps and subject specific temporal dy-
namics [11]. However, one might ask whether a specific
recovered spatial map is a group level map or is only present
in a certain subject dataset. Current MS data driven methods
are unable to make this distinction.
In this paper we present a novel SVD and penalized rank-1
matrix approximation method which aims to separate the
overall joint (common across subjects) information from
the sub-specific (local) information. The proposed method
accomplishes this in two stages; starting with temporally con-
catenated datasets, in first stage SVD is used to decompose
the datasets into two low-rank matrices containing joint and
sub-specific information. Second stage further refines and de-
composes these matrices into joint and sub-specific temporal
dynamics and activation maps respectively.

2. PROPOSED FORMULATION FOR MULTI
SUBJECT FMRI ANALYSIS

2.1. Existing formulation

Consider p fMRI datasets denoted by Yi ∈ Rn×N , i ∈ [1, p],
with N brain voxels and n time points per voxel. Data driven
methods with sparsity constraints aim to decompose Yi as:

Yi = DiX;∀i ∈ [1, p] , with Di ∈ Rn×k,X ∈ Rk×N (1)

with l2 normalized columns of Di and a sparse coefficient
matrix X. Under a joint learning framework, all datasets are
temporally concatenated to construct Y ∈ Rnp×N and are
decomposed into a factor model (dictionary) D ∈ Rnp×k and
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sparse coefficient matrix X ∈ Rk×N . The problem can be
formulated as [16]:

min
D,X
||Y− DX||2F + λ

N∑
q=1

‖xq‖1 s.t. ∀ i, l, ‖dil‖2 ≤ 1 (2)

where λ is the sparsity controlling parameter, dil represents
lth column of matrix Di, and ‖ · ‖1 and ‖ · ‖2 are the column-
wise l1 and l2 vector norms respectively. This problem can be
efficiently solved by using online dictionary learning (ODL)
algorithm [17]. The resulting D and X matrices contain k
dense temporal dynamics and k sparse group level spatial
maps (SM) respectively.
Learning SMs using this formulation lacks the ability to dis-
tinguish group-level (joint) SMs from sub-specific ones. In
the next section, we propose a novel dictionary learning algo-
rithm which decomposes the multi-subject fMRI datasets into
matrices containing joint information and sub-specific infor-
mation which are then further refined to extract most signifi-
cant joint and sub-specific TCs and SMs respectively.

2.2. Proposed Data Driven Method

Starting with Y ∈ Rnp×N containing normalized and tempo-
rally concatenated fMRI datasets, in the first stage, we aim to
decompose it into the sum of three low-rank matrices; Y =
J+ I+E containing joint info, sub-specific (individual) info,
and representation error matrix respectively. The idea is to
use singular value decomposition (SVD) to capture the most
significant information from Y in J. Starting with J = I =
E = 0, we construct J as

J = U (:, 1 : rJ)Σ (1 : rJ , 1 : rJ)V (:, 1 : rJ)
> (3)

where U, V contain the left and right singular vectors and Σ
contains the singular values of matrix X = Y − I. Here the
resulting J is the best rJ -rank approximation of X in terms
of the Frobenius norm [18]. The matrix I is then constructed
subject-wise as best rI -rank approximation of Zi = Yi − Ji.
Experimental results have shown that only a few iteration
of these steps are enough instead of repeating till conver-
gence. At this point, most significant joint and sub-specific
info would have been captured in J and I respectively.
Stage two of our algorithm constitutes refining the informa-
tion present in J and Ii into k sparse spatial maps and their
corresponding k smooth temporal dynamics [19]. Generally
speaking, we aim to minimize the following cost function:

min
1

2
‖G0 − AB‖2F +

k∑
m=1

(
α1‖bm‖1 + α2 a>m Ω am

)
s.t. ‖am‖2 = 1

(4)
where am and bm are the columns and rows from matrices
A ∈ Rn×k and B ∈ Rk×N respectively, ‖ · ‖1 is l1-norm,

Ω ∈ Rn×n is a non-negative definite roughness penalty
matrix [7] [19], α1 is the sparsity, and α2 is the atom smooth-
ness controlling parameter. Here G0 can be either J or Ii.
The hemodynamic response of brain voxels is a smooth and
low frequency signal [19] without going through sharp and
abrupt changes. To force the learned atoms to be smooth as
well, we included a>m Ω am into our cost function. This term
becomes large if there are sharp changes in the vector am,
thus increasing α2 will force the atoms to be smooth.
The cost function in (4) is a penalized low rank-k matrix
approximation problem and is biconvex. It can be approxi-
mately minimized via k penalized rank-1 matrix approxima-
tions via matrix deflation, i.e, by replacing G0 in (4) by the
residual matrix Gm = Gm−1 − ambm with m = [1, · · · , k].
Thus, minimizing (4) is equivalent to minimizing

min
1

2
‖Gm−1 − ambm‖2F + α1‖bm‖1 + α2 a>m Ω am

s.t. ‖am‖2 = 1
(5)

We can approx. solve (5) by using alternating minimization,
i.e. keeping bm fixed, am that minimizes (5) is given by

âm = argmin
am

1

2
tr (‖Gm−1‖2F − 2 a>m Gm−1 bm>

+ ‖am‖22 ‖bm‖22) + α2 a>m Ω am
(6)

Taking derivative w.r.t. am and equating to zero leads to the
solution given by

âm = (I ‖bm‖22+ α2 Ω)−1 Gm−1bm>

âm =âm/‖âm‖2
(7)

where I is identity matrix of appropriate size. Similarly, keep-
ing am fixed, the solution that minimizes (5) is derived from

b̂
m

= argmin
bm

1

2
tr (‖Gm−1‖2F − 2 a>m Gm−1 bm>

+ ‖am‖22 ‖bm‖22) + α1‖bm‖1
(8)

whose solution is

b̂
m

= sgn(a>k Gm−1)�max(0, |a>k Gm−1| − α11N ) (9)

where � is the Hadamard product and 1N is a row vector
of dimension N . Equations (7) and (9) are very similar to
the power algorithm [18] equations, which if initialized ran-
domly, converge almost surely to a least square rank-1 fit.
Our experiments have shown that using only 2 − 3 iterations
of (7) and (9) are enough to get a good solution. The en-
tire procedure is summarized in algorithm 2. Thus in stage
two, using algorithm 2, we decompose the matrices J and
Ii as J = AJ BJ and Ii = AI

i BI
i ∀i = [1, . . . , p], where

AJ ∈ Rnp×kJ (TCs), BJ ∈ RkJ×N (SMs), AI
i ∈ Rn×kI

(TCs), and BI
i ∈ RkI×N (SMs). The complete procedure is

outlined in algorithm 1.
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Algorithm 1: Proposed Data Driven Method
Input: Y, p, rJ , rI , kJ , kI , α1, α2, noIt

1 Stage 1: J← 0, I← 0
2 for it = 1 : noIt do
3 Compute X = Y− I,
4 Find J as best rJ -rank approx. of X using SVD.
5 for i = 1 : p do
6 Compute Zi = Yi − Ji,
7 Find Ii as best rI -rank approx. of Zi using

SVD.

8 Stage 2:
9 Use Algorithm 2 to refine J into kJ -rank matrix pairs

as J = AJ BJ ,
10 for i = 1 : p do
11 Use Algorithm 2 to refine Ii into kI -rank matrix

pairs as Ii = AI
i BI

i ,

Output: J, I, AJ , BJ , AI
i , BI

i

Algorithm 2: Refinement Algorithm
Input: G0, k, noIt, α1, α2

1 Initialize A and B from G0,
2 for m = 1 : k do
3 for it = 1 : noIt do
4 use (7) to get am,
5 use (9) to get bm,

6 Compute Gm = Gm−1 − am bm,
7 Store the pair as A(:,m) = am and B(m, :) = bm,

Output: A, B

The parameters α1 and α2 can be obtained using cross vali-
dation or model selection criteria and the parameters kJ ≥
rJ and kI ≥ rI . Here rJ and rI are directly related to how
much joint and sub-specific information we want to retain and
kJ and kI control the total number of TC/SM components
learnt from J and I respectively.

3. EXPERIMENTAL RESULTS

In the following section we have used simulated fMRI
datasets to establish the working of the proposed algorithm
along with a comparison with CODL [11] algorithm. The
proposed algorithm is then validated using motor task fMRI
datasets acquired from HCP Q1 release [20]. The details of
these experiments are given in their respective sections.

3.1. Simulation Study

In the simulation study, our objective is to show that our pro-
posed algorithm is capable of separating the joint information
and sub-specific information from a temporally concatenated

Table 1. Mean and std dev (Pearson correlation) of most cor-
related TCs and SMs w.r.t. ground truth over 100 trials.

SNR dB Algorithm
TCs SMs

Mean STD Mean STD

-10
Proposed 0.99 0.01 0.89 0.05

CODL 0.95 0.03 0.79 0.05

-15
Proposed 0.98 0.01 0.85 0.06

CODL 0.87 0.04 0.58 0.21

multi-subject fMRI datasets efficiently. To do so, we started
by generating p = 6 fMRI datasets using the publicly avail-
able SimTB toolbox [21]. The simulated spatial maps (SM)
were (100 × 100) voxels in size and the time courses (TC)
had 150 time points with repetition time TR = 2 sec/sample.
The single-subject datasets Yi ∈ R150×104 were created
where each dataset contained the linear combinations of 4
SM/TC pairs, with 3 common (joint info) and 1 unique pair
(sub-specific info). We introduced spatial variability in the
common SMs by creating random translations (µ = 0, σ = 2
voxels) in x and y directions, rotations (µ = 0, σ = 2.5
degrees), and spreads (µ = 1, σ = 0.03), where µ and σ
represent mean and standard deviation respectively. We also
introduced temporal variability across subjects in a similar
fashion. Each resulting dataset was corrupted by AWGN to
make the overall SNR = {−10,−15} dB. For comparisons,
the ground truth (GT) for common SMs/TCs were gener-
ated by taking the mean of each SM/TC common pair for
all subjects. All noisy datasets were normalized to make
||Yi||F = 1, temporally concatenated into a big matrix
Y ∈ R900×104 and passed to the proposed and CODL al-
gorithms for decomposition.
The big data matrix Y is decomposed by the proposed
method into small matrices (AJ ,BJ) containing joint info
and (AI

i ,B
I
i ) containing sub-specific info. Both stages of the

algorithm were iterated 3 times, learning 3 joint and 1 unique
component in stage 1 and refining them into 6 joint and 2
unique components in stage 2. The tuning parameters were
selected as α1 = 0.003 and α2 = 0.1. For a fair comparison,
we used the full datasets instead of temporally reduced ones
to compare with CODL [11], which reduces to ODL [17]
under this condition. Thus, starting with Y, we used ODL
to learn a dictionary of size 900 × 20 with λ = 0.15, batch
size of 200 and 50 iterations. We experimented with different
tuning parameters for both algorithms and selected the ones
giving best results in terms of the correlation between recov-
ered sources and respective GT counterparts.
The experiment was repeated 100 times, each time with dif-
ferent datasets, and the most correlated recovered SM/TC
w.r.t. the GT were saved. The mean and std dev of Pear-
son correlation coefficients are given in table 1 where it can

2723



Mean SM correlations

BI
1

BI
2

BI
3

BI
4

BI
5

BI
6

BJ

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

0.2

0.4

0.6

0.8

Mean TC correlations

AI
1

AI
2

AI
3

AI
4

AI
5

AI
6

AJ

TC
1

TC
2

TC
3

TC
4

TC
5

TC
6

TC
7

TC
8

TC
9

0.2

0.4

0.6

0.8

Fig. 1. The mean Ground Truth (GT) SM and TC correla-
tion coefficients over 100 trials with respect to all recovered
AJ ,BJ ,AI

i ,B
I
i matrices. SNR = 0 dB.

be seen that for both noise levels, the proposed algorithm
was able to outperform CODL. Furthermore, to highlight
the proposed algorithm’s ability to separate joint from the
sub-specific information, we correlated the GT TCs with the
recovered AJ , and AI

i and SMs with BJ , and BI
i and the

results are shown in Fig. 1. Here it can be seen that the first
3 SM/TC pairs have been successfully extracted into the joint
info matrices BJ and AJ respectively, with the sub-specific
information recovered in their respective BI

i and AI
i matrices.

3.2. Multi-subject task fMRI Analysis

In this section we use 3 subject motor task fMRI datasets
acquired from human connectome project (HCP) Q1 release
[20] to validate the proposed algorithm. Following a visual
cue, each subject was asked to perform 5 tasks, i.e. flexing
left toe, right toe, left finger, right finger and tongue move-
ments to map the motor areas of the brain. For experimental
setup, spatial and temporal preprocessing details, the reader
is referred to [6] section V-B. After preprocessing, voxels
outside the brain were removed by using a brain mask, each
brain volume was vectorized and placed as rows of Yi result-
ing in a data matrix with size n × N for each subject. Here
n = 284 are time points and N = 283494 are brain voxels.
The datasets were acquired using TR = 0.72s. Each column
of Yi was normalized to zero mean and unit variance followed
by normalizing it to get ‖Yi‖F = 103. These matrices were
then temporally concatenated (Y) and used by the proposed
algorithm to decompose the joint info and sub-specific info
into separate matrices.
We iterated both stages of the algorithm 3 times, 50 joint and
10 sub-specific components were kept in stage 1 which were
then further decomposed into 80 joint and 20 sub-specific
components respectively. The tuning parameter used in stage
2 were set to α1 = 0.6 and α2 = 0.2. Using the timing in-
formation of the 5 tasks along with visual cue timings, we
generated 6 paradigm time courses (PTC) which were com-
pared with the average TCs recovered in the matrix AJ . The
most correlated TCs found are shown in Fig. 2 a). To check
for activations, the corresponding rows of BJ were extracted,
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Fig. 2. a) Most correlated average TCs from AJ (red) with
their respective PTCs (blue) recovered by the proposed algo-
rithm. The corresponding correlation coefficients are given
above each TC plot. b) Respective activation maps from BJ .

DMN

Fig. 3. Default mode network from joint info matrix BJ .

z-scored and thresholded at p < 0.001 and are shown in Fig.
2 b). With careful examination, it can be seen that the first
5 activations are tightly localized in the motor cortex area,
whereas, the last one (VC) shows activations in the primary
visual cortex area of the brain. Upon detail examinations of
all recovered activation maps in BJ , we found the default
mode network along with a few other well reported resting
state networks [22] as well. The recovered DMN is shown in
Fig. 3.

4. CONCLUSION

In this paper we proposed a new DL algorithm which can
separate the joint and sub-specific information from multi-
subject fMRI datasets. The performance of the algorithm
was highlighted using a simulation experiment where the pro-
posed algorithm was able to decompose joint SM/TC pairs
and sub-specific ones into different matrices with high preci-
sion. The results generated are on par with the results recov-
ered by the CODL algorithm [11]. The algorithm was then
validated on the experimental task fMRI dataset.
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