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ABSTRACT

We develop new efficient online algorithms for detecting tran-
sient sparse signals in TEM video sequences, by adopting the
recently developed framework for sequential detection jointly
with online convex optimization [1]. We cast the problem as
detecting an unknown sparse mean shift of Gaussian obser-
vations, and develop adaptive CUSUM and adaptive SSRS
procedures, which are based on likelihood ratio statistics with
post-change mean vector being online maximum likelihood
estimators with `1. We demonstrate the meritorious perfor-
mance of our algorithms for TEM imaging using real data.

Index Terms— Sequential detection, online algorithms,
microscopy imaging

1. INTRODUCTION

TEM (Transmission Electron Microscopy) has long been a
powerful tool for imaging material structure and character-
izing material chemistry. However, the process to resolve
structural features is laborious and time intensive, drastically
limiting the characterization throughput. Recent advances in
electron detector technology and computational capacity have
facilitated the development of high-speed data collection with
microsecond frame rate acquisition speeds. This advance in
TEM technology has enabled new paradigms in data collec-
tion. Because of this, in-situ processing of the real-time col-
lected data to detect emerging features become a highly de-
sired property for the new TEM system. Currently, the data
are captured real-time but analyzed off-line, limiting the ex-
perimentalist’s ability to explore in detail regions of interest
while at the microscope.

Sequential change-point detection that can be adaptive to
data can revolutionize this process. The signal detection task
in TEM has two characteristics. First, each observation is
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a very high-dimensional vector so we need develop an al-
gorithm that can handle a large amount of data sequentially.
Second, the change is sparse in the sense that among all the
parameters only a small proportion of them changes after the
unknown change-point.

In this paper, we present a sequential adaptive change de-
tection method for in-situ TEM signal detection. The method
is developed by adapting the recent one-sample update based
sequential detector in [1], by assuming Gaussian observations
and the signal being a sparse mean shift to the Gaussian. Our
method can precisely control false alarms and can be com-
puted recursively, and thus automate the detection in real-
time. We demonstrate meriterous performance of our meth-
ods for TEM imaging using real data.

Compared to the classic CUSUM procedure (see, e.g.,
[2]), which needs to pre-specify a post-change mean param-
eter and its performance can can impacted when there is pa-
rameter misspecification, our adaptive procedure is more ro-
bust since the mean is updated with sequential data. Com-
pared to the classic generalized likelihood ratio (GLR) pro-
cedure when the plug-in estimators are exact maximal likeli-
hood estimators (MLE), our method is much faster and mem-
ory efficient since our plug-in estimators are computed recur-
sively with one-sample update (thus raw data needs not to be
stored) using an online convex optimization algorithm.

2. SEQUENTIAL ADAPTIVE DETECTION

In this section, we present our two sequential adaptive de-
tection algorithms, which are adapted from the one-sample
update scheme in [1]. Assume a sequence of d-dimensional
observations X1, X2, . . . which are i.i.d. random variables
from a multivariate normal distribution N (θ, Id) with un-
known mean parameter θ ∈ Rd. We will estimate θ online to
be adaptive.

Consider the sequential change-point detection problem
that the underlying distribution of the data changes from a
known state to an unknown state after at an unknown change-
point ν. Without loss of generality, we assume that the pre-
change mean is an all-zero vector. The post-change mean is
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Fig. 1. Diagrams demonstrating the basic principles of bright
field imaging in TEM. TEM can operate in two modes, illus-
trated in Left Panel: in the real space; Right Panel: in the
diffraction space. The real space images can be computed
from the diffraction space images. The incident beam of elec-
trons passes through the sample and a lens/aperture system
is used to form the image. Our algorithm can be applied to
both type of data: the image sequence data and the diffraction
pattern sequence data.

unknown and belong a set A defined as A = {θ : ‖θ‖0 ≤ s},
where ‖ · ‖0 is the number of non-zero entries of θ and s is
a prescribed value to characterize the sparsity. Formally, we
consider the following hypothesis test:

H0 : X1, X2, . . .
i.i.d.∼ N (0, Id),

H1 : X1, . . . , Xν
i.i.d.∼ N (0, Id),

Xν+1, Xν+2, . . .
i.i.d.∼ N (θ, Id), θ ∈ A.

(1)

The goal is to detect the change as quickly as possible after
it occurs under the false alarm constraint. We will consider
likelihood ratio based detection procedures which we call the
adaptive CUSUM (ACM), and the adaptive SRRS (ASR) pro-
cedures, respectively.

Now we derive the detection statistics. For each putative
change-point location k before the current time t, the post-
change samples are {Xk, . . . , Xt}, and the post-change pa-
rameter is estimated as

θ̂k,i = θ̂k,i(Xk, . . . , Xi), i ≥ k. (2)

Denote fθ as the density function for N (θ, Id). The likeli-
hood ratio at time t for a hypothetical change-point location
k is given by (initialized with θ̂k,k−1 = θ0)

Λk,t =

t∏
i=k

fθ̂k,i−1
(Xi)

f0(Xi)
, (3)

where Λk,t can be computed recursively since

Λk,t = Λk,t−1 ·
fθ̂k,t−1

(Xt)

f0(Xt)
.

Since the change-point location ν is unknown, due to the
maximum likelihood principle, we take the maximum of the

statistics over all possible values of k. We consider window-
limited versions [3] to avoid infinite memory, by taking the
maximum over k ∈ [t−w, t], wherew is a prescribed window
size. This leads to the ACM procedure

TACM(b) = inf

{
t ≥ 1 : max

t−w≤k≤t
log Λk,t > b

}
, (4)

where b is a pre-specified threshold.
The Shiryaev-Roberts (SR) procedure replace the maxi-

mization over k in (4) with summation, which can be justified
from a Bayesian prior assumption. By following the same
strategy, we obtain the following ASR procedure [4]:

TASR(b) = inf

{
t ≥ 1 : log

(
t∑

k=t−w

Λk,t

)
> b

}
, (5)

where b is a pre-specified threshold. As shown in [1], the per-
formance of the ACM and the ASR is very similar. However,
the likelihood ratio in (3) can explode when d is very large.
Thus, in practice we prefer to use the ACM procedure to avoid
possible numerical issues.

The detection statistic relies on a sequence {θ̂k,t} of esti-
mators constructed using online mirror descent (OMD). The
main idea of OMD is that, at each time step, for any k, the es-
timator θ̂k,t−1 is updated using the new sampleXt, by balanc-
ing the tendency to stay close to the previous estimate against
the tendency to move in the direction of the greatest local de-
crease of the loss function. The advantages of OMD are (1)
it allows a simple one-sample update: the update from θ̂k,t−1

to θ̂k,t only uses the current sampleXt, and the update for the
detection statistic has a simple recursive scheme. This is the
main difference from the traditional GLR statistic [5] where
each θ̂k,t is the exact MLE estimated using all the histori-
cal samples. (2) OMD is a generic algorithm for solving the
online convex optimization (OCO) problem [6]. In [1], it is
proven that even these approximate MLE schemes have very
little statistical efficiency.

Here, we adapt the general ACM and ASR for exponential
family distributions in [1] to the case when the signal is a
sparse Gaussian mean shift, and set the constraint set for the
unknown parameter to be Γ = {θ : ‖θ‖1 ≤ s} (refer to [7]
for an automatic choice of s) as a convex relaxation of the
non-convex set A. Denote ‖ · ‖1 and ‖ · ‖2 as the `1 and `2
norms in the Euclidean space, respectively. The algorithms
are summarized in Algorithm 1. The projection (step 7) onto
`1 ball can be obtained via simple soft-thresholding [8].

3. RESULTS ON REAL-DATA

We test our methods one two TEM datasets: one consists of
a sequence of real space images, and another one consists of
a sequence of diffraction space images. The experimental set
ups are the exact same for the two datasets. The only differ-
ence is that we change the lens setting to collect diffraction
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Algorithm 1 Online mirror-descent (OMD) for {θ̂k,t}
Require: A sequence of data Xk, . . . ∈ Rd; a closed and

convex set Γ ⊂ Rd of the parameters; a decreasing se-
quence {ηt}t≥1 of strictly positive step-sizes.

1: θ̂k,k−1 = 0,Λk,k−1 = 1. {Initialization}
2: for all t = k, k + 1, . . . , do
3: Acquire a new observation Xt

4: Compute loss `t(θ̂k,t−1) := ‖θ̂k,t−1‖22/2− θ̂
ᵀ
k,t−1Xt

5: Compute Λk,t = Λk,t−1 × fθ̂k,t−1
(Xt)/f0(Xt)

6: θ̃k,t = θ̂k,t−1 − ηt(θ̂k,t−1 −Xt) {Dual update}
7: θ̂k,t = arg minu∈Γ ‖u − θ̃k,t‖2 {Projected primal up-

date}
8: end for
9: return {θ̂k,t}t≥1 and {Λk,t}t≥1.

patterns instead of image-space images. We will develop dif-
ferent preprocess steps for these two datasets due to their dif-
ferent characteristics. After the preprocessing, we show that
both become detecting a sparse signal in Gaussian noise.
Experiment set-up. The data is a sequence of metal corro-
sion images captured using bright-field transmission electron
microscopy (TEM). The experiment setup is as follows. Iron
thin films were sputtered at room temperature onto silicon ni-
tride membranes compatible with an in-situ TEM liquid cell
holder. 20 vol% acetic acid was introduced to the system to
initiate corrosion. Imaging was performed using an FEI Titan
at 300 kV with a Gatan OneView camera in either real space
or diffraction space. The time-resolved diffraction patterns
provide information on the formation of corrosion bi-products
and the dissolution of crystalline material. For illustration
purposes, we first select 23 gray images (2 images per sec-
ond) in the bright-field TEM image sequence and downsize
each image to 308-by-308 pixels. At some time point, corro-
sion initiates in the image sequence, which is emphasized by
the red circle in Figure 2.

5.4 Real-data example

In this section, we consider a sequence of metal corrosion images captured using nanoprobe electron
beam technology7. For illustration purposes, we downsize each image to 308-by-308 pixels. There are
23 gray images (frames) in the sequence and 2 frames per second. Hence, this corresponds to 11.5
seconds from the original video. At some point, a rust point appears in the image sequence. Sample
images from the sequence are illustrated in Fig. 1.

In the example, we set the error tolerance " = 0.01, and let # = 0.5. To evaluate detection
performance, we run 3000 Monte Carlo trials and add Gaussian noise to images. To estimate the
noise variance �2, we choose two noisy images early in the sequence (hence we can assume they do
not contain a rust dot), subtract them (hence get rid of the mean), and use the mean square values
of the di↵erence image to estimate �2, which we set to be 30.

Since the rust signal is local, i.e., when it occurs, a cluster of pixels capture the rust, we will
apply our detector in the following scheme. Break each image into (rectangular or square) patches of
equal size. Design a quadratic detector as described above for a patch. Then at each time, whenever
one patch detects a chance, we claim there has been a change - this corresponds to a “multi-sensor”
scheme and the local detection statistic by taking their maximum. Fig. 2 illustrated the expected
detection delay (EDD) versus the number of patches. In all instances, the false-detection-rate and
miss-detection-rate are both zero. Note that when the number of patches is greater than 25, we can
detect the change immediately after it occurs (the delay is only 1 sample).
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Figure 1: A sequence of metal corrosion images captured using nanoprobe electron beam technology.
The time (index for the image in the sequence) is labeled; the rust initially starts at time t = 8 (marked
by red circle) and develops over time. The rust signal has higher intensity than the background.

6Data courtesy of Josh Kacher at Georgia Institute of Technology
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Fig. 2. A sequence of metal corrosion images captured us-
ing bright-field TEM. The time (index for the image in the se-
quence) is labeled; the corrosion initiates at time t = 8 (marked
by the red circle) and develops over time. The corroded area
has a higher intensity signal than the rest of the film.

We apply our ACM and ASR procedures, choosing
w = 200 as the prescribed window size and setting the
threshold b for detection procedures by simulation such that

the false alarm rate (the average-run-length, ARL, which ex-
pected number of observations between two false alarms) is
about 10000.

3.1. Detection for real space images

Preprocessing. First, vectorize each image into a vector of
dimension 308× 308 = 94864. For each pixel, we take their
value in the first 5 frames as the training data to compute the
mean and standard deviation. Then we standardize samples
for each pixel by subtracting the mean and dividing the stan-
dard deviation. We ignore the correlation between the pixels
for this example and it turns out to be a good approximation.

After the pre-processing, we have a total of 23 such vec-
tors: X1, . . . , X23 ∈ Rd, with d = 94864. The pre-change
distribution is N (0, Id) and the goal is to detect the un-
known time ν at which the underlying distribution changes
to N (θ, Id) for some unknown mean θ 6= 0. We assume that
on average each pixel has a unit shift after the standardization
so we set s = 105 in Γ for our methods. We compare our
algorithms with the standard multivariate CUSUM procedure
[9] (the post-change mean parameter is set to be an all-one
vector), and the GLR procedure [3].
Results. TACM(b) and TASR(b) with Γ = {θ : ‖θ‖1 ≤ 105}
both stop at time t = 8, CUSUM procedure with an all-one
post-change mean vector stops at time t = 9 and GLR pro-
cedure stops at time t = 6. Since we see from Figure 2 that
the change happens at time t = 8, the detection delays of
our methods are 0 (meaning it only takes one sample to de-
tect the corrosion spot) while that of CUSUM procedure is 1
(meaning it takes two samples to detect). The GLR procedure
raises an false alarm since it stops when there is no change.
The possible reason for the GLR raising the false alarm is that
the GLR is more easily affected by noise. This also shows that
GLR procedure performs better in ideal case such as synthetic
signals but may not perform well in practice.

3.2. Detection for diffraction space images.

Preprocessing. To detect weak signal (“sparse spot”) in
diffraction image space, we need to effectively remove the
background of the image since the change of interest will
be tiny bright spot buried in between the bright rings. We
develop a set of preprocessing steps that are tailored to the
characteristics of the diffraction images. The most impor-
tant part for the analysis is to remove the largest visible ring
(neither the bright area near the center nor the dark area near
the boundary of the image). This task is nontrivial for the
following two reasons. First, there is a dark shadow of a ir-
regularly shaped stick in the middle of the image so the center
of the rings is hidden. Second, even if we find the center and
remove the shadow we still need identify the the ring with the
largest radius.

To overcome the first difficulty, we draw the histogram
of the pixel values as shown in the left figure in Fig. 3. Sev-
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thresholded

Fig. 3. Left: a diffraction domain image; Middle: the his-
togram of the intensity; Right: The thresholded image if we
only keep pixels of value in (0, 0.2).

eral gaps between the brightness is observed in the histogram.
For example, there is no point in the image with the bright-
ness centered around 0.4, 0.6 and 0.8. In fact, these gaps are
highly related to the rings in the image. The right plot in Fig.
3 shows the points with brightness between 0 and 0.1 and we
surprisingly find the shadow. Therefore, we can throw away
the points with that brightness in order to remove the stick in
the original image. Then, Fig. 4 shows that we can separate
the rings successfully by focusing on the points with sepa-
rated ranges of the brightness.Distribution	of	the	lightness

0.1	- 0.2 0.2	- 0.3 0.3	- 0.4 0.4	- 0.5

0.5	- 0.6 0.6	- 0.7 0.7	- 0.8 0.8	- 0.9

Fig. 4. Background removal: we threshold a diffraction space
image with different range of threshold values, and this yields
rings at different radii. These concentric rings help to estimate
their common center, and subsequently we subtract off the
bright rights to remove these bright rings.

To overcome the second difficulties, we use the Hough
transformation [10] to look for the centers. We run the Hough
transformation on all the plots in Fig. 4 and then compute the
center by averaging the 8 estimated centers. To find the largest
visible rings, we apply the Canny edge detection algorithm
[11] that identifies the boundary between the dark and bright
area accurately. The final results after all the prepossessing
procedures are shown in Fig. 5. Note that the change - a tiny
bright spot can finally be revealed.

The bright spot is very weak and it is even hard to be ob-
served by eyes. Fortunately, we know by domain knowledge
that the bright spot usually appear near certain radius (but at
an unknown angle). Therefore, we can “hunt” the bright spot
around such radius. We focus our attention on the points with

Fig. 5. The diffraction image after preprocessing for
background removal. The complete video is available
at www.isye.gatech.edu/∼yxie77/diffraction-video.mp4 The
middle image is the 17th image of the 100 images. We zoom
out the middle image to show the bright spot which represents
the anomaly we would like to detect.

a specified radius r that is slightly larger than the radius of the
ring. We then formulate the detection task as the detection of
a sparse mean shift. Using polar coordinate transformation,
for each prepossessed image we observe a 360-dimensional
signal that represents the averaged pixel values in every angle
for a fixed radius. The results are shown in Fig. 6. We can
see clearly that one bright spot appears from about the 17th
image for the angle equal to 171, and another bright spot ap-
pears from about the 49th image for the angle equal to 153.
After the pre-processing, we have a total of 100 such vectors:
X1, . . . , X100 ∈ Rd, with d = 360. The pre-change distri-
bution is N (0, Id) and the goal is to detect the unknown time
ν at which the underlying distribution changes to N (θ, Id)
for some unknown mean θ 6= 0. In this example we just set
Γ = Rd.

Fig. 6. The extracted signals for the sequence of 100 images
(selected angles).

Results. TACM(b) and TASR(b) with Γ = Rd both stop at
time t = 18, CUSUM procedure with an all-one post-change
mean vector stops at time t = 24 and GLR procedure stops at
time t = 4. Domain knowledge tells us that the change hap-
pens at time t = 17. So the detection delays of our methods
are 1 while that of CUSUM procedure is 7 (meaning it takes
two samples to detect). The GLR procedure raises an false
alarm because it is too sensitive to the noise.
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