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ABSTRACT

Learning a low-dimensional image representation yields ef-
fective and efficient face recognition. The use of such a
representation helps to weaken the curse of dimensionality.
However, the traditional facial representation method is not
robust against partial occlusions or variations of expression.
To solve this problem, this paper proposes a more reliable,
complex-valued representation of facial image. The robust
representation is based on the proposed locality-preserving
complex-valued Gaussian process latent variable model (LP-
CGPLVM). In the LP-CGPLVM, the Euler formula is utilized
to transform original facial images into the complex domain.
A proper complex GP is employed to model the mapping
between the complex-valued high-dimensional data and the
corresponding low-dimensional representation. Moreover,
the locality-preserving constraint is taken into consideration
to preserve the neighborhood data structure. The experimen-
tal results indicate that our proposed method is robust against
partial occlusions and various facial expressions.

Index Terms— Robust face recognition, occlusion,
Gaussian process latent variable model, complex-valued rep-
resentation

1. INTRODUCTION

This work concerns the face recognition problem and, in par-
ticular, the distortion of facial images by partial occlusions
and various expressions. Various methods [1, 2, 3, 4] for han-
dling partial occlusions, such as sunglasses, scarves or hands,
and different expressions have been developed over the past
decade. Among them, the subspace-based technique is the
one of most popular for finding low-dimensional representa-
tion subspaces that are embedded in a high-dimensional face
image space. An appropriate low-dimensional representation
not only retains the information structures of images in high-
dimensional space but also increases computational efficiency
and avoids the curse of dimensionality.

One commonly used subspace-based method is nonneg-
ative matrix factorization (NMF), which provides a part-
based image representation. Zhi et al. [5] proposed a graph-

preserving NMF (GSNMF) to represent facial images, which
considered the neighborhood data structure. Similar to NMF,
principal component analysis (PCA) [6] is a linear subspace
method that assumes that each facial image is a linear com-
bination of a set of orthogonal basis images. Liwicki et al.
[7] developed the Euler PCA and applied it to face recon-
struction. In Euler PCA, real-valued data are converted to
complex-valued data using the Euler formula. The Frobenius
norm on the complex domain has been proven to be equiv-
alent to the cosine dissimilarity in real domain, leading to a
robust measure of dissimilarity between the facial image and
the associated occluded image.

Motivated by the work of Liwicki et al. [7], this paper
proposes a locality-preserving complex-valued Gaussian pro-
cess latent variable model (LP-CGPLVM) for the recognition
of faces with various expression and partial occlusions. To
cope with occluded face images, the real-valued pixels of a
face image is firstly transformed to complex-valued data us-
ing the Euler formula. The proposed method assumes the ex-
istence of a nonlinear mapping from the complex-valued low-
dimensional latent space to the complex-valued data space,
which is characterized by a proper complex Gaussian pro-
cess. The complex-valued Gaussian process latent variable
model (CGPLVM) [8] is then employed to obtain the robust
complex-valued representation. Furthermore, complex prior
distribution that is based on locality-preserving projections
(LPP) [9] is proposed to preserve the local data structure. The
major contributions of this work are summarized as follows.
(1) the learned complex-valued representation supports facial
recognition that is robust against partial occlusion and various
expression, and (2) the design of a complex prior distribution
for complex-valued low-dimensional representations.

2. PRELIMINARIES

2.1. Gaussian Process Latent Variable Model (GPLVM)

In this section, we briefly review the GPLVM [10]. GPLVM
is a nonlinear method for finding a low-dimensional man-
ifold in high-dimensional data using a GP prior. Given
high-dimensional data yn ∈ RD, n = 1, ..., N , we de-
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note the corresponding low-dimensional representation as
xn ∈ RQ, by Q � D. The logarithm marginal likelihood
L(X) of the image data Y = [y1, ...,yN ]T conditioned on
X = [x1, ...,xN ]T is written as follows.

L(X) = −DN
2

ln 2π − D

2
ln |T| − 1

2
tr(T−1YYT) (1)

where T = K + β−1IN , β is the parameter of Gaussian
noise and K is a kernel matrix with Knm = k(xn,xm) that
expresses the relationship among data. For example, a ra-
dial basis function (RBF) kernel is defined as k(xn,xm) =

θ1 exp(−θ2 ‖xn − xm‖2) , where θ = {θ1, θ2} are hyperpa-
rameters in the model. The low-dimensional representations
X and the hyperparameters θ can be learned by maximizing
Eq. (1).

Unlike PCA and NMF methods, GPLVM applies a prob-
abilistic framework that can compensate for variation in es-
timation of low-dimensional representations. In the field of
pattern recognition and image processing, the GPLVM has
been used for visualization [10]. Besides, it can be used with
uncertain input data [11], making it more robust than non-
probabilistic methods when data are missing.

2.2. Locality-preserving Projections (LPP)

LPP [9] is a linear dimensionality reduction algorithm that
preserves the locality of high-dimensional data. It has been
successfully used to represent facial images [5]. The locality-
preserving objective is,∑

nm

(xn − xm)Snm (2)

where xn is the low-dimensional representation of input data
yn and S is a similarity matrix, which can be constructed us-
ing a Gaussian kernel:

Snm =

{
exp(−‖yn − ym‖22/ρ) ; e(yn,ym) = 1

0 ; e(yn,ym) = 0
(3)

where e(yn,ym) = 1 represents that yn and ym belong to
the same subject and ρ is an empirical parameter.

Based on LPP, Zhong et al. [12] proposed a Gaussian pro-
cess latent random field (GPLRF), which developed a prior
distribution to impose the locality constraint on the represen-
tation of data in latent space. Eleftheriadis et al. [13] pre-
sented a discriminative shared GPLVM (DS-GPLVM) that is
based on the work of Zhong et al. [12] and applied it to rec-
ognize facial expressions.

3. LOCALITY-PRESERVING COMPLEX-VALUED
GPLVM (LP-CGPLVM)

The goal of this paper is to preserve the advantages of the
GPLVM and to extend them to robust facial recognition with

partial occlusions and various expressions. Based on our pre-
vious work [8], we propose a locality-preserving CGPLVM
(LP-CGPLVM). Unlike the work of Eleftheriadis et al. [13],
we introduce a locality-preserving prior distribution in the
complex domain. Two perspectives of robustness are con-
sidered herein . First, the robust dissimilarity measure based
on the Euler formula. Second, the robustness of dealing with
uncertain input data. In this section, the proposed method
is divided into robust transformation, complex-valued facial
representation and locality-preserving training.

3.1. Robust Transformation

The cosine-based dissimilarity measure is robust for occluded
facial images [14]. It yields a shorter distance between the
facial image and the associated image with partial occlusion
than does the Euclidean norm. Given two images yn,ym ∈
RD with pixel values from 0 to 1, the cosine-based dissimi-
larity measure is defined by

d(yn,ym) =

D∑
d=1

[1− cos (απ(ynd − ymd))] (4)

where α ∈ R+.
Following the work of Liwicki et al. [7], the real-valued

pixels of an image can be transformed into the complex do-
main to deal with the occluded facial image. This is feasi-
ble because the cosine dissimilarity measure in real domain
is equivalent to the Euclidean norm between the complex-
valued data [7]. The facial image yn with the values from
0 to 1 can be mapped to the complex domain using the Euler
representation, which is given by

zn =
1√
2
eiαπyn =

1√
2

 eiαπyn1

...
eiαπynD

 (5)

Notably, for α < 2, the mapping is one-to-one. In this work,
α was set to 1.5. The relationship between Eq. (4) and Eq.
(5) can be written as follows

‖zn − zm‖22 =

∥∥∥∥ 1√
2
eiαπyn − 1√

2
eiαπym

∥∥∥∥2
2

=

D∑
d=1

[1− cos(απynd − απymd)]

=d(yn,ym)

(6)

3.2. Complex-valued Facial Representation

With the above robust property, a CGPLVM [8] is utilized to
learn a low-dimensional representation of data in the complex
domain. The principle behind the CGPLVM is that complex-
valued data can be represented by low-dimensional latent
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space and a proper complex GP. Given complex-valued data
zn ∈ CD, the CGPLVM is defined as

znd = gd(wn) + εnd (7)

where wn ∈ CQ, with Q � D, is the corresponding low-
dimensional representation and εnd ∼ CN (0, β−1, 0). The
functions gd, d = 1, ..., D are drawn from an independent
proper complex GP. That is, gd = [gd(w1), ..., gd(wN )]T ∼
CN (0, kc(wn,wm),0), kc is a kernel function which speci-
fies the similarity among the complex-valued latent variables
wn. In this work, kc is obtained as the sum of two real kernel
functions, krr and kii [15]. The krr and kii are chosen as

k(wn,wm) = θ1 exp
(
−θ2(wn −wm)H(wn −wm)

)
+ θ3

(8)
where (·)H is the Hermitian transpose and θ = {θ1, θ2, θ3}
are hyperparameters.

The log marginal likelihood of complex-valued data
Z = [z1, ..., zN ]T ∈ CN×D given the latent variables
W = [w1, ...,wN ]T ∈ CN×Q is

ln p(Z|W) = −DN lnπ −D ln |Tc| − tr(T−1c ZZH) (9)

where Tc = Kc + β−1IN . Learning in the CGPLVM
comprises maximizing Eq. (9) with respect to the low-
dimensional representations and the hyperparameters.

3.3. Locality-preserving Training

Notably, the CGPLVM focuses on preserving the global data
structure. To incorporate the locality-preserving constraint
into the CGPLVM, the complex prior distribution of the
low-dimensional representation W is introduced. Just as
in the GPLRF [12], the locality-preserving term is defined
to preserve the neighborhood data structure, the introduced
complex prior distribution does the same things for complex-
valued data, which is written as

p(W) =
1

Zd
exp

(
− 1

σ2
d

tr
(
WLWH

))
(10)

where L = E − S is a Laplacian matrix, S is defined as
Eq. (3) and Enn =

∑
mSnm. The MAP estimation of the

complex-valued representation W can be obtained by gra-
dient descent-based methods. For a new test image z′, the
prediction of low-dimensional representation w′ can be esti-
mated by optimizing the likelihood p(z′,w′|Z,W, θ) with
an uninformative prior of w′, which is written as follows.

L(w′) = − ln
∣∣σ2(w′)ID

∣∣− (z′−µ(w′))H(z′−µ(w′))
σ2(w′) − 1

2w
′Hw′

(11)
where µ(w′) = ZHT−1c k and σ2(w′) = kc(w

′,w′) −
kHT−1c k, with k = [kc(w1,w

′), ..., kc(wN ,w
′)]T.

(a)

(b)

Fig. 1. (a) Example images from the MHMC face database.
(b) Images with randomly masked occlusions with block sizes
of 60×60 to 85×85 pixels.

4. EXPERIMENTAL RESULTS

4.1. Experimental Data and Settings

In this work, the performance of the proposed method when
applied to the MHMC [16] and YaleFace database, was eval-
uated. The MHMC database includes 4 subjects, each as-
sociated with four facial expressions– angry, happy, neutral
and sad. Each subject in the database spoke 30 sentences
related to a topic about a mood, which were recorded. Fig.
1 (a) shows an example from the MHMC database. In the
experiment herein, a total of 480 color frontal images of
four subjects, with 30 images per expression, were collected
from the MHMC database. The original image resolution
was 240×320 pixels. Based on the coordinates of the eyes,
the original images were cropped to 240×150 to remove the
background. Then, the images were converted to grey scale
and downsampled to 40×25. Two fifths of the non-occluded
images were used as training samples. The rest were masked
by a random block with a size of 60×60 to 85×85 pixels
and used as test samples, as shown in Fig. 1 (b). We also
conducted robust face recognition using a database with prac-
tical occlusion. The YaleFace refers to 15 subjects. Each
subject consists of 11 grey scale images. The images were
collected with different settings, including illumination, facial
expression and occlusion (glasses). Fig. 2 displays some sam-
ples that are associated with one subject from the YaleFace
database. The resolution of the original images is 243×320
pixels. Each image is manually cropped and then resized to
40×27 pixels. To make this database more challenging, M
non-occluded images were randomly selected and masked
using a block of size 55×85. An occluded image (glasses)
and M artificially occluded images (M = 3, 4, 5) from each
subject are used for testing. The remaining N images are
used for training (N = 5, 6, 7).

The proposed method was compared to other subspace-
based representation methods– PCA, NMF, GSNMF [5],
GPLVM [10] and CGPLVM [8]. In PCA and NMF-based
methods, the training images were used to learn the basis.
Then, the low-dimensional representations of the test images
were obtained using the basis. In GPLVM and CGPLVM,
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Fig. 2. Some samples from the YaleFace database.

the RBF based kernel [8] was used and formed using the
training images. Given the pre-trained kernel matrix, the low-
dimensional representations of the test images were learned
based on the representations of the training images. The 1
nearest-neighbor (1-NN) was adopted as the classifier.

Fig. 3. Visualization of training images in 2-D latent space:
(left) CGPLVM, (right) LP-CGPLVM.

4.2. Results and Discussions

In the first experiment, the effectiveness of using the locality-
preserving complex prior distribution was investigated on vi-
sualization experiment. For clarity, only four subjects from
the MHMC database were displayed. Fig. 3 shows relevant
results obtained using both the CGPLVM and the proposed
LP-CGPLVM with the non-occluded face data. In Fig. 3,
the 2-D complex-valued representations were transformed to
real-valued representations by applying the inverse function
of Eq. (5). The value of σ2

d was set to 10−2. The experiments
indicated that the LP-CGPLVM has a greater discriminative
locality ability than the CGPLVM.

In the second experiment, the robustness of the pro-
posed method was evaluated using artificial occlusion images
and practical occlusion images. Fig. 4 compares the pro-
posed method with the baselines when applied to the MHMC
database with the latent dimension Q set to 15. Table 1
presents the recognition results obtained using the YaleFace
database with the latent dimension Q of 30. Three obser-
vations are made. (1) the recognition rate of the proposed
robust complex-valued representation exceeds those of the
other real-valued representation methods on all occlusion
block sizes. (2) owing to the nonlinear nature of GP, the
recognition rates of GPLVM, CGPLVM and LP-CGPLVM
are better than those of the PCA and NMF, and (3) a compar-
ison between the CGPLVM and the LP-CGPLVM confirmed
the power of the locality-preserving term.
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Fig. 4. Recognition results obtained using different methods
with various occlusion block sizes on MHMC database.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel and robust means of represent-
ing facial images. The potential of using the complex-valued
representation for occluded facial images was studied. Un-
like state-of-the-art image representation methods, the pro-
posed LP-CGPLVM uses a robust dissimilarity measure that
is based on the Euler formula and then analyzes the complex-
valued data rather than real-valued pixels. The updating rule
of the complex-valued representation is derived. The results
of the first experiment revealed that the introduced complex
prior distribution of low-dimensional latent variables makes
the complex-valued representations more discriminative. The
second experiment demonstrated that the proposed complex-
valued representation is more robust than the real-valued rep-
resentation for facial images with simulated occlusions and
practical occlusions. In the future, we would like to apply the
proposed method to other types of images.

Table 1. Recognition rate of proposed method and baselines
with various numbers of training samples (N ) on YaleFace.

N 5 6 7

PCA 86.67 89.33 93.33
NMF 87.78 92.00 90.00

GSNMF 88.89 93.33 96.67
GPLVM 86.67 90.67 93.33

CGPLVM 90.00 94.67 96.67

LP-CGPLVM 91.11 96.00 98.33
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