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ABSTRACT

Storage, browsing and analysis of human activity videos can
be significantly facilitated by automated video summariza-
tion. Unsupervised key-frame extraction remains the most
widely applicable technique for summarizing activity videos.
However, their specific properties make the problem difficult
to solve. Typical relevant algorithms fall under the video
frame clustering or the dictionary-of-representatives fami-
lies, with salient dictionary learning having been recently
proposed. Under this formulation, the video frames selected
as key-frames are the ones which simultaneously best re-
construct the entire video and are salient compared to the
rest. This paper improves upon such a method by replacing
the video frame saliency estimation term with one based on
Regularized SVD-based Low Rank Approximation, taking
advantage of the well-established correlation between mid-
range matrix singular values and salient regions. Extensive
empirical evaluation showcases the high performance of both
the salient dictionary learning framework and the specific
proposed method.

Index Terms— Video Summarization, Big Data, Video
Saliency, Singular Value Decomposition, Key-frame Extrac-
tion

1. INTRODUCTION
Human activity videos constitute a common target for auto-
mated video summarization algorithms, since they typically
extend to many hours of mostly uninteresting footage, while
only a small percentage of the video frames are actually
important. Such videos (derived from surveillance feeds,
TV/film production shooting sessions, sports coverage with
static camera, etc.) have certain recurrent characteristics:
heavy inter-frame visual redundancy due to static camera and
static background, lack of editing cuts, lack of objectivity in
specifying the most important video frames. Video summa-
rization is a difficult task where a delicate balance between
different factors has to be achieved in the produced summary,
including sufficient compactness (lack of redundancy), con-
ciseness, outlier inclusion, semantic representativeness and
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content coverage. The specific properties of activity videos
further complicate the problem.

Different forms of activity video summaries have emerged
over the years. The most trivial one is simple temporal video
segmentation [1], where the video has to be partitioned over
time in consecutive activity segments. This is actually a sub-
stitute of shot cut/boundary detection, commonly applied in
other types of video summarization as a pre-processing step
[2]. Therefore, a second summarization step is still needed.
Another approach is video synopsis [3], where the summary
consists in a number of synthetic video frames derived from
blending visually active regions found in multiple original
video frames. This cannot be applied if the goal is to re-
tain a subset of the original video frames without process-
ing them (e.g., in sports coverage), or if the depicted scenes
are crowded and contain overlapping active regions. Finally,
skimming [4] results in a short “trailer”, but requires specific
video frames to be pre-identified as important. Thus, key-
frame extraction is the most significant stage of a video sum-
marization pipeline. A static video summary is composed of
a set of temporally ordered “key-frames”, i.e., a subset of the
original video frame set.

Unsupervised methods mainly fall under two categories:
video frame clustering and dictionary-of-representatives ap-
proaches. In the first case, the video frames are partitioned
in distinct groups and the ones closest to the cluster cen-
troids are selected as the key-frames [5] [6]. The number
of clusters/key-frames either depends proportionally on the
video length, or is defined by the user. Such distance-based
data partitioning approaches do not take into account the
semantic content of video frames, completely offloading se-
mantics to the underlying video frame representation method.
On the other hand, dictionary-of-representatives-based al-
gorithms assume that all video frames can be reconstructed
as linear combinations of a small number of representatives
among them, which are subsequently identified and selected
as the key-frames [7] [8]. In most cases, the cardinality of the
representatives/key-frame set is pre-fixed by the user. These
approaches inherently consider video frame semantics in an
unsupervised manner, since they detect video frames con-
taining isolated visual building blocks of the original video.
The video frame representations upon which these methods
operate are vectors derived using global image descriptors [9]
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[6], local image descriptors aggregated under a representation
model (such as Bag-of-Features) [10] [11], or the raw image
pixel values [8].

Recently, salient dictionary learning was introduced for
activity video key-frame extraction [12]. Under this for-
mulation, the key-frame set is extracted by simultaneously
optimizing the desired summary for maximum reconstructive
ability and maximum saliency. The reconstruction term guar-
antees summary conciseness, representativeness and com-
pactness, inherently operating within the constraints imposed
by video semantics, through identification of the video frames
containing only the elementary visual building blocks. Dic-
tionary construction is modulated by the saliency term, meant
to ensure outlier inclusion and broad content coverage, which
is computed in a simple inter-frame distance-based manner.
The entire process is expressed as a Column Subset Selec-
tion Problem (CSSP) [13]. A specific form of video frame
saliency was also integrated into generic video summarization
in [8], although in a much more inflexible manner.

The numerical, Singular Value Decomposition-based
algorithm in [12] improved upon a previous, slower, no-
saliency CSSP-based genetic approach that was employed for
activity video summarization in [14]. Both methods extract
a pre-defined number C of key-frames. Their performance
was empirically measured using a novel objective evaluation
metric that bypassed the subjective, or semi-subjective, na-
ture of traditional summarization metrics. Temporal video
segmentation ground-truth annotation data, describing obvi-
ous temporal boundaries between consecutive activity video
segments, were employed for counting the number of ex-
tracted key-frames derived from actually different activity
segments (independent key-frames), as an indirect indication
of summarization success. For evaluation purposes, the to-
tal number of requested key-frames per video (C) was set
equal to the corresponding real number of different activity
segments (known from the ground truth). Thus, the ratio of
extracted independent key-frames to C, called Independence
Ratio (IR) score, was employed as a practically objective
evaluation metric, with any two video frames belonging to
the same activity segment treated as interchangeable.

Despite the high performance (in terms of IR) and speed
of the algorithm presented in [12], the simple per-frame
saliency computation is particularly time consuming (since a
dense inter-frame distance matrix must be constructed) and,
by design, only takes into account temporally local saliency,
i.e., the saliency of each video frame mainly depends on
its distance from its temporal neighbours. This paper ad-
dresses the above limitations by replacing the saliency term
with one based on the SVD decomposition of the original
video frame matrix. The SVD decomposition is readily avail-
able, since it is necessary for computing the reconstruction
term and, therefore, the proposed saliency term only adds
minimal computation overhead. Additionally, the proposed
term takes a global perspective while evaluating per-frame

saliency, by exploiting the well-established correlation be-
tween mid-range matrix singular values and salient regions.

2. ALGORITHM BACKGROUND
Below, an input video composed of Nf frames is represented
as a matrix D ∈ RV×Nf . Each column vector dj , 0 ≤ i <
Nf , describes a video frame. Moreover, we assume that the
desired summary is a matrix C ∈ RV×C , C << Nf con-
taining an ordered set of video key-frames. Its columns are
indicated by a binary-valued frame selection vector s ∈ NNf .

2.1. The Column Subset Selection Problem

In the methods this paper improves upon (the no-saliency,
dictionary-of-representatives algorithm [14] and the salient
dictionary learning algorithm [12]), the Column Subset Se-
lection Problem (CSSP) [13] was selected for algebraically
modelling the reconstruction term.

Given D and a parameter C << Nf , the CSSP consists
in selecting a subset of exactly C columns of D, which will
form a new V ×C matrix C that captures as much of the infor-
mation contained in the original matrix as possible. The goal
is to construct a matrix C ∈ RV×C such that the quantity:

‖D− (CC+)D‖F (1)

is minimized. ‖ · ‖F is the Frobenius matrix norm and C+ is
the pseudoinverse of C.

The CSSP is considered to be NP-hard and, besides ex-
haustive search, only approximate solutions are known. A
fast, numerical, randomized method operating in two stages
[13] was employed as a main building block in [12]. First,
approximately ClogC columns are sampled from matrix D,
using an SVD-derived probability distribution. Thus, the ma-
jority of the less outlying columns are removed and a pre-
liminary summary matrix is obtained that serves as a suitable
input to the second stage. Then, exactlyC columns can be de-
terministically selected from the sample using any traditional
CSSP algorithm (the Rank-Revealing QR decomposition [15]
was employed in [12]).

2.2. Salient Dictionary Learning for Activity Summariza-
tion

Human activity videos are mainly composed of elementary
visual building blocks assembled in several combinations,
thus D is assumed to be low-rank. A salient dictionary learn-
ing algorithm consists in the simultaneous optimization of
two components: the “reconstruction term” and the “saliency
term”. Intuitively, the reconstruction term alone will tend to
favour video frames solely containing common, elementary
visual building blocks of the entire video, which facilitate
the reconstruction process. This leads to inclusion of unin-
teresting video frames (e.g., depicting the static background)
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and exclusion of outliers from the summary. A saliency
term becomes necessary to compensate for this, leading to
the so-called salient dictionary learning objective defined in
[12]:

min
s

: ‖D−CC+D‖F − αcsTp, (2)

where α ∈ [0, 1] is a user-provided parameter regulating the
contribution of the saliency component and c is a scaling fac-
tor to bring per-video frame saliency value down to the scale
of the dictionary component. p ∈ RNf is a precomputed
per-frame saliency vector, assigning a scalar saliency value to
each video frame.

In [12], the approximate CSSP algorithm from [13] was
coupled with a simple saliency term, in order to solve the
salient dictionary learning problem for activity video sum-
marization. The saliency term was adapted from the spatial,
intra-frame component of the saliency estimation algorithm
presented in [16]. By exploiting a dense inter-frame distance
matrix, saliency values were assigned to entire video frames,
instead of video frame blocks, and spatial distance between
the latter ones was replaced by temporal distance between
video frames. The method resulted in a pre-computed, per-
frame saliency vector p.

Subsequently, in order to adapt the employed CSSP
method from [13] to salient dictionary learning, matrix D
was modified in the following manner:

D̂ = (1− α)D + αD (diag(n)diag(p)) , (3)

where n ∈ RNf was a vector containing normalization co-
efficients, so as to map the pre-computed saliency factors to
the interval [0, 1]. In D̂, less salient columns (correspond-
ing to less salient video frames) were scaled down to a de-
gree directly proportional to their saliency and to the provided
saliency contribution parameter α. Finally, the numerical al-
gorithm in [13] was applied on D̂, in order to obtain the de-
sired summary. The above method implicitly solved the ob-
jective from Eq. (2).

3. REGULARIZED SVD-BASED LOW RANK
APPROXIMATION FOR SALIENT DICTIONARY

LEARNING
Despite the good performance and fast execution of the salient
dictionary learning method in [12], compared to simple clus-
tering and to the no-saliency, genetic CSSP algorithm from
[14], the relatively high time requirements of constructing the
dense inter-frame distance matrix for computing the simple
saliency term, as well as the temporally local nature of the
estimated video frame saliency, were clear limitations of the
algorithm.

To mitigate this issue, the correlation between mid-range
matrix singular values and salient regions (well-established
in image saliency estimation [17]) is exploited here in or-
der to formulate an alternative saliency term. The proposed

method models precomputed per-frame saliency on a regu-
larized SVD-based reconstruction of D. The SVD decom-
position is already employed for computing the reconstruc-
tion term (by the CSSP algorithm [13]) and, therefore, the ad-
ditional computational overhead introduced by the proposed
saliency term is minimal. This is in contrast to the saliency
term used in [12], where the time needed for computing the
inter-frame distance matrix was significant.

First, the SVD decomposition D = UΣVT is obtained.
Then, the singular values of D, lying ordered on the diago-
nal of Σ, are clustered into three groups: large, intermedi-
ate and small. To achieve this, the singular values are adap-
tively clustered into three discrete groups (large, intermediate,
small) using a fast, dynamic programming-based variant [18]
of the Jenk’s Natural Breaks Optimization algorithm for one-
dimensional clustering [19]. The latter operates by exploit-
ing a scalar version of the Fisher ratio, typically employed
in Linear Discriminant Analysis (LDA), thus by attempting
to simultaneously minimize intra-cluster variance and maxi-
mize inter-cluster variance. The large ones and the small ones
among the singular values are set to zero and, thus, the regu-
larized matrix Σ̃ is derived. Subsequently, the video matrix is
approximately reconstructed using Σ̃:

D̃ = UΣ̃VT . (4)

In image saliency estimation, the underlying intuition
would be that large, intermediate and small singular values
correspond to non-salient/visually dominating image regions
(e.g., the background), salient/important image regions and
noise/fine-grained visual details, respectively. In the pro-
posed method, the video frame representation D (encoding
spatiotemporally varying content) is employed in place of
raw image data (directly conveying spatially varying con-
tent). Thus, in D̃, salient spatiotemporal video regions have
been enhanced and noise or non-salient regions have been
suppressed. D̃ is, in essence, a two-dimensional spatiotem-
poral video saliency map.

A preliminary saliency value for the i-th video frame can
easily be extracted from D̃ in the following manner:

p̃i = ‖d̃:i‖1, (5)

where d̃:i is the the i-th column of D̃ and p̃ is a preliminary,
per-frame saliency vector.

The final, precomputed per-frame saliency vector p can
then be derived by applying the following post-processing
saliency enhancement step on p̃. Initially, the preliminary
saliency value p̃i of video frame d:i is subtracted from the
average saliency of its temporal neighborhood [i−M, i+M ].
This is implemented by first performing moving average fil-
tering on p̃, using a filtering window of length 2M+1. Subse-
quently, all negative per-frame saliency values (corresponding
to video frames which, on average, are less salient than their
neighbours) are set to zero, giving rise to the final precom-
puted, per-frame saliency vector p.
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Table 1. Mean IR scores for all competing methods across all datasets (higher is better).
Random Proposed [14] [12] [9] [7] [8]

IMPART 58.86% 72.16% 75.85% 72.02% 72.94% 68.03% 50.17%
i3DPOST 59.01% 75.64% 72.56% 74.39% 72.65% 65.81% 44.87%
IXMAS 59.40% 66.38% 62.00% 66.22% 65.29% 66.16% 46.66%

Table 2. Mean execution time per video frame (in milliseconds) for all competing methods across all datasets (lower is better).
Proposed [14] [12] [9] [7] [8]

IMPART 17.90 552.92 232.21 76.85 4043.82 427.84
i3DPOST 42.05 517.80 262.26 70.01 2544.20 385.35
IXMAS 80.82 734.34 461.15 225.45 8594.31 891.95

The intuition behind this post-processing step is that the
most salient video frames should be temporally distant, simi-
larly to how salient image regions are typically selected so as
to be spatially distant, with less salient regions suppressed, in
image saliency map estimation algorithms [17]. Such a con-
sideration also fits well with video summarization, where the
demand of maximum content coverage requires the extracted
key-frames to be temporally dispersed.

As soon as the final p has been computed, D can be mod-
ified with Eq. (3). Then, the numerical algorithm from [13]
can be applied on D̂ in order to obtain the desired summary,
as in [12].

4. QUANTITATIVE EVALUATION
In order to empirically evaluate the proposed algorithm, ex-
tensive comparisons were made against a baseline clustering
approach [9], random video frame sampling over a million it-
erations, as well as competing state-of-the-art methods [14]
[12] [7] and [8], using three human activity video datasets.
This also serves as a much more comprehensive empirical
evaluation for the methods in [14] and [12] than the single-
dataset evaluation results available there.

A richer video frame description and representation
scheme was now employed, compared to [14] and [12].
Three different feature descriptors/modalities were extracted
per video frame: LMoD [11], SIFT [20] and IDT [21], ag-
gregated per video frame under the IFV approach [22]. IFV
codebook size was empirically set to 8, 24 and 32 visual
words for IT, SIFT and LMoD, respectively, leading to total
dimensionality V = 17568. This description/representation
scheme was selected due to its consistent performance across
datasets. The much weaker and highly dataset-tuned (w.r.t
parameters) scheme employed in [14] and [12] led, for all
summarization methods, to very high performance on the
single dataset employed there, but too low IR scores on other
datasets. In the case of [8], vectorized raw image pixel values
were employed for video frame representation, due to the
nature of the algorithm.

Single-view subsets of three publicly available, annotated
activity video datasets were employed. The datasets were

slightly processed (e.g., multiple consecutive activities con-
catenated) to suit the task. The datasets are IMPART [1] (330
activity segments, 27252 frames at 720 × 540 px), IXMAS
[23] (467 activity segments, 36220 frames at 390 × 290 px)
and i3DPOST [24] (104 activity segments, 16074 frames at
640 × 480 px).

Tables 1 and 2 present the mean IR scores obtained by all
competing methods, across all datasets, as well as the mean
execution times per video frame. The significant differences
in evaluation results from the ones in [14] and [12] have
arisen due to the different representation scheme employed
here, the removal of time needed for video frame descrip-
tion/representation from the reported runtime, as well as the
fact that the mean results over five iterations are shown here
for non-deterministic algorithms, instead of the best results.
Additionally, for [12], [8] and the proposed method, only the
highest IR results across five tested values of the saliency
contribution parameter (α = 0, 0.25, 0.50, 0.75, 1.00) are
reported per dataset.

As it can be seen, [8] completely fails to handle activity
summarization, simple clustering from [9] performs surpris-
ingly well, while [14] achieves best IR performance in IM-
PART, at a significant runtime penalty compared to the pro-
posed method which is, by far, the fastest of all. Additionally,
the proposed algorithm achieves top IR performance in the
other two datasets.

5. CONCLUSIONS
A method for activity video key-frame extraction via salient
dictionary learning has been presented. The proposed ap-
proach entails replacing the simple saliency term from an ear-
lier algorithm with a much faster to compute term, that inher-
ently considers video frame saliency from a global perspec-
tive. The proposed saliency term is based on Singular Value
Decomposition, thus fitting very well with the reconstruction
term from the earlier algorithm (an SVD-based solution to the
Column Subset Selection Problem). Extensive empirical eval-
uation conducted on three processed public datasets suggests
that, in general, the presented algorithm achieves state-of-the-
art performance at near-real-time execution time.
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