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ABSTRACT

Deep Neural Network (DNN) is a basic method used for the
rare Acoustic Event Detection (AED) in synthesised audio.
The structure of DNNs including Multi-Layer Perceptron
(MLP) and Recurrent Neural Network (RNN) for AED tasks
has rather fewer hidden layers compared with computer vi-
sion systems. This paper tries to demonstrate that a DNN
with more hidden layers does not necessarily guarantee a
better performance in AED tasks. Taking the rare AED in
synthesised audio with MLPs as an example and simulating
a fixed budget of memory in an embedded system, various
structures of MLPs are tested with fixed number of parame-
ters engaged. Comparing the importance of neuron numbers
in a hidden layer (i.e. the width of DNNs) and the importance
of layer numbers in DNNs (i.e. the depth of DNNs) for AED
tasks, the performance of the candidate DNN systems are
evaluated by the event-based error rate. The results illustrate
that a shallower network may outperform a deeper network
when enough parameters are engaged and a larger number of
parameters introduces a better performance in general.

Index Terms— Deep neural network, shallow neural net-
work, audio event detection

1. INTRODUCTION

The purpose of Audio Event Detection (AED) is to identi-
fy the sound events in audio recordings, including estimating
the onset and offset of sound events and giving the label for
each event. There are many applications of audio event de-
tection such as multimedia indexing [1], intelligent monitor-
ing system in living environment [2], scene classification and
recognition [3], etc.

Towards the automatic audio event detection and tagging
in polyphonic audio, rare audio event detection in synthesised
audio forms an initial stage of AED research. To detect a
synthesised rare audio event in a piece of polyphonic audio,
various types of Deep Neural Networks are used. Regard-
less of specific structure of DNNs used, the DNNs used for
AED tasks generally have less layers than the best performed
DNNs for computer vision tasks. In the field of computer vi-
sion, neural networks are generally have a number of hidden
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layers. For example, Szegedy et al [4] proposed a deep con-
volutional neural network (CNN) with 22 layers to achieve
the classification and detection of images. Simonyan et al [5]
found that a CNN with 16-19 weights layers introduces a sig-
nificant improvement to image recognition.

For AED tasks, the best performed DNNs usually have
fewer hidden layers compared with the DNNs used for com-
puter vision tasks: Choi et al [6] propose a noise reduction
approach to enhance mel-band energy feature in DNN-based
system with only 3 hidden layers. Hayashi et al [7] propose a
new method of recognising daily human activities based on a
DNN classifier with only 3 hidden layers. Salamon and Bel-
lo [8] proposed for acoustic modelling using DNNs with 4
hidden layers. However, the speech processing, there are re-
search [9] asserting a DNN with more layers could help the
performance of system. As there are no literatures reporting
the DNNs used for AED tasks prefer more hidden layers, an
experiment is presented in this paper to test whether a DNN
with more hidden layers is likely to introduce the success of
AED tasks.

For easier presentation, the number of neurons in a layer
is defined as the width of a layer. A wider layer has more neu-
rons. The depth of a DNN is defined as the number of hidden
layers in a DNN. A deeper neural network has more hidden
layers. In this paper, the importance of width and depth of
a DNN in AED tasks are demonstrated with fixed number of
parameters engaged in a MLP for rare audio event detection
in synthesised audio.

The constrains applied in the paper, the fixed number of
parameters for a MLP, has a scenario in real life. If a sys-
tem for AED is implemented with a Field Programmable Gate
Array (FPGA) chip whose budget of memory and logic re-
sources are engaged. The most suitable MLP for the system
should be the MLP that makes full use of all resources and in-
troduces the best performance. Thus the full use of memory
makes the number of parameters in MLPs unchanged while
different structures of MLPs are implemented by the system.

When the number of parameters in a DNN system are
fixed, there are two typical ways to design a MLP for AED
tasks: a deeper but narrower network or a shallower but wider
network. more hidden layers with fewer neurons in each layer
and fewer To our knowledge, there are few research focusing
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on the performance of two types of MLPs with fixed number
of parameters engaged. In this paper, a pilot experiment is p-
resented to demonstrate the importance of depth and width of
a MLP by evaluating the performance of MLPs in rare audio
event detection tasks with synthesised audio.

The reminder of the paper is organized as follows. Sec-
tion 2 introduces the proposed architecture of this paper. Sec-
tion 3 describes the dataset and experiment setup and analyzes
experimental results. Section 4 draws the conclusion of our
work.

2. PROPOSED ARCHITECTURE

2.1. Multi-Layer Perceptron

MLP is a commonly used method for AED tasks [10] despite
the simple structure and limited accuracy. The MLPs used in
this paper has an input layer, certain number of hidden layers
and an output lyaer. The input of the MLP is the mel-band
energies with 40 bands for a concatenation of five successive
frames of a piece of audio. Each frame of audio lasts 40 m-
s with 44.1KHz sampling rate and there are 20 ms overlap
between the neighbour frames. The output layer consists of
softmax activation function with two units. The activation and
inactivation of the target rare audio event are seen as two s-
tates that are mutually exclusive (i.e. only one state is valid at
any time).

For the hidden layers, the Rectified Linear Unit (ReLU)
[11] is used as the activation function for better performance
and faster convergence [12]. By setting the number of hidden
layers L, the number of parameters in MLP N, the number of
output neurons 7" and the width of MLPs H follows

N=(L-1)+«H*+D+T+L)+xH+T (1)

As N and T is fixed in this experiment, the width H can
be calculated by a given L. In this experiment, the number of
hidden layers are varies to test the importance of depth and
width of MLPs for rare audio event detection in synthesised
audio.

To compare the importance of depth and width of the
MLPs, whose number of parameters are engaged, in rare au-
dio event detection. The depth of MLPs is set to a dedicated
value first and the width of MLPs is calculated by equation
(1). Hence by setting the total number of parameters N in
MLPs and the number hidden layers L, the structure of a MLP
is decided. For simplicity, we use {V, L} to represent a MLP
who has L hidden layers and N parameters in total.

The number of parameters in MLP is set to 12K, 80K as
these are the number of parameters in the DCASE 2017 base-
line system [13] and our prior works [14], where both system
is based on MLPs. And the total number of parameters is set
to 120K to further study the content of this paper.

2.2. Post-processing

With a predefined threshold, the activation of rare audio event
engaged is determined by the outputs of the activation neu-
ron in the output layer of the MLPs. Based on the knowledge
that the audio event is continues in time domain, a median
filter is applied to the results of thresholding process to re-
move possible outliers of the output. The window of median
filter is successive 5 samples of the output of the thresholding
process, which is long enough to fix some outliers without
affecting the detection of rare audio events.

3. EXPERIMENT AND RESULTS

3.1. Dataset

In this paper, the detection of rare sound events provided by
the IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE2017) [13] is presented
in order to analyse the influence of the width and depth of the
neural network on performance. The term rare indicates that
every target sound event to be detected could occur at most
once within a half-minute period. In this AED task, there are
three target sound events to be detected: baby cry, gun shot
and glass break. The audio data consists a mixture of a piece
of natural background sound and a rare audio event synthe-
sised artificially with different Signal-Noise Ratios (SNR) at
a random timing point.

In this experiment, the possible rare audio event to detect-
ed is known but there might be no rare events in the given
piece of audio. As a result, three separate MLPs with the i-
dentical structure are to be developed for the detection of three
target sound events.

The number of rare event audio for synthesis used in this
experiment varies for each target rare audio events as shown
in Table 1. The instances of rare audio used for training audio
synthesis will not be used for the synthesis process of testing
audio. On average, the duration of rare audio event is short
compared with the background audio. The mean value for the
duration of the sound event in development datasets is shown
in Table 2. In all 1121 background audios, 844 of them are
used for training datasets and 277 of them are used for test
datasets

Events Train | Test | Total
Baby Cry 106 42 148
Glass Break 96 43 133
Gun Shot 134 53 187

Table 1. The number of instances of rare audio events for
synthesis.

The mixtures of rare audio events and background audio
are generated with an engaged algorithm [13]. In this paper,
there are 500 mixtures synthesised for every target class of
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Events Train | Test
Baby Cry 241s | 1.85s
Glass Break | 1.36s | 0.72s
Gun Shot 1.43s | 1.04s
Table 2. The duration of sound events in developmen-
t datasets.

rare audio event in the training dataset and another 500 mix-
tures are synthesised to form a test dataset. The probability of
the existence of target event is 0.5, that is, 250 synthetic pieces
of audio have target events and the remaining pieces audio
have no target events present. The combination of the rare
sound instance and the background sound are randomly se-
lected. The event-to-background ratios (EBR) which was de-
fined as a ratio of average Root Mean Squared Error (RMSE)
value calculated over the duration of the event are also ran-
domly selected from predefined probability value.

3.2. Setup

A typical cross-validation method is used in this experiment.
The training dataset is divided into two subsets, where 90% of
the data is used for training MLPs and the remaining 10% of
the data is used for validating the resulting models to prevent
overfitting problem. The performance of the final MLPs are
evaluated by the test dataset only.

In order to make full use of the computing resources, ten-
sorflow [15] framework is used to build deep neural networks
in this paper. The parameters of the network were initialized
by random values sampled from zero-mean normal distribu-
tion. Three DNN-based systems are trained by using back-
propagation with cross-entropy loss function, correct labels
and estimated labels. A stochastic gradient descent algorithm
[16] is performed using Adam algorithm optimization [17] in
mini-batches to improve learning convergence. Dropout tech-
nique [18] is used to prevent overfitting problem.

3.3. Results

For evaluation of system performance, evaluation of result-
s includes event-based error rate (ER) as metrics described
in [19] in the experiment of this paper. Event-based metrics
compare system output and corresponding reference event by
event. The ER is the total number of insertions I, deletions D

and substitutions S relative to the number of reference events
E.

S+D+1
FR= ——— 2
i (2)
The calculation of ER is calculated by equation (2).
With the MLPs used in this experiment, the event based
error rate (ER) of all three target class of audio events are
listed in Table 3.

(a) N =12K

{N,L} | BCy | GBk | GSt | Avg
{12K,1} | 0.70 | 0.22 | 0.78 | 0.56
{12K,2} | 0.75 | 022 | 0.71 | 0.56
{12K,3} | 0.63 | 0.22 | 0.71 | 0.52
{12K,4} | 0.64 | 0.21 | 0.68 | 0.51
{12K,5} | 0.74 | 0.23 | 1.00 | 0.65

() N = 80K

{N,L} | BCy | GBk | GSt | Avg
{80K,1} | 0.68 | 0.20 | 0.68 | 0.52
{80K,2} | 0.66 | 0.18 | 0.56 | 0.47
{S0K,3} | 0.69 | 0.24 | 0.56 | 0.49
{80K,4} | 0.78 | 0.24 | 0.58 | 0.53
{S0K,5} | 0.75 | 0.23 | 0.61 | 0.53

(©) N = 120K
{N,L} | BCy | GBk | GSt | Avg
{120K,1} | 0.62 | 0.17 | 0.53 | 0.44
{120K,2} | 0.70 | 0.20 | 0.50 | 0.48
{120K,3} | 0.74 | 0.24 | 0.51 | 0.49
{120K,4} | 0.78 | 0.23 | 0.55 | 0.52
{120K,5} | 0.72 | 0.26 | 0.54 | 0.51

Table 3. Event-based error rate of the rare audio event de-
tection in synthesised audio with different structures of MLPs
engaged. In the representation { N, L}, N represents the total
number of parameters in MLPs and L represents the number
of hidden layer in MLPs.’BCy’ represents “baby cry”, G-
Bk’ represents “glass break”, *GSt’ represents “gunshot” and
Avg’ represents the average performance. A smaller value
indicates a better performance of MLP.

As shown in Table 3, the error rate of classification does
not decrease with the depth of neural network increasing
when the total numbers of network are fixed as 12K, 80K
and 120K respectively. When the total number of parameters
is fixed as 12K, the best performed MLP detecting “glass
break” and “gunshot” has 4 hidden layers whereas the best
performed MLP detecting “baby cry” has 3 hidden layers
instead. When the total number of parameters is set to 80K,
the best performed MLP for “baby cry” and “glass break™ has
2 hidden layers and the best MLP for detecting “gunshot” has
3 hidden layers. With 120K parameters in the MLPs, there
are 2 hidden layers in the best MLP detecting “gunshot” and
there is only 1 hidden layer in the best MLP detecting “baby
cry” and “glass break”. In general, a shallower MLP structure
is preferred by a MLP with more parameters.

Comparing the best results of MLPs with different num-
ber of parameters engaged, the MLPs with more parameters
outperforms the MLPs with fewer parameters. Thus we can
say the shallower MLPs can outperform the deeper MLPs
when there are enough parameters are engaged in MLPs.

Considering the results presented in Table 3, when imple-
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menting a hardware solution for rare audio event detection
system, a deeper MLP may not improve the accuracy of au-
dio event detection tasks with fixed budget of memory and
computation source especially when the budget of memory is
adequate.

4. DISCUSSION

Shown by the results of experiment, a MLP with more pa-
rameters engaged prefer a shallower structure. Especially for
the MLP with 120K parameters, the MLP with only 1 hidden
layer performs best in general whereas for small MLPs who
has 12K parameters, the best performed MLP has 4 layers in
general, which is deeper than the MLP with 120K parameters.

This fact suggests that given the total number of parame-
ters engaged, the best performed MLPs can detect rare audio
events in two different ways. If the shallower MLPs outper-
forms the deeper MLPs, the success of audio event detection
depends on a group of direct mapping between inputs and out-
puts thus requires more parameters in MLPs. In the case that
the deeper MLPs is better than shallower MLPs, the mapping
between inputs and outputs is hierarchically established.

To demonstrate the proposed hypothesis, the inactivity ra-
tio of weight in MLPs are calculated. If the absolute value of
a weight is less than 0.01, the weight between two neurons
is said to be inactive. The ratio of weights inactivity is de-
fined as ratio between the number of inactivate weights and
the total number of parameters.

From the results presented in Table 4, the inactivity ratio
of weights in MLPs only depends on the depth and the width
of the MLP. The MLPs with more parameters are less active.
Moreover, a deeper and narrower MLP usually has lower ac-
tivity ratio of weights thus is more active in general and vice
versa.

The results can demonstrate that the way that the MLP
detects rare audio events with different number of parameter-
s engaged is different. As a result, a deeper MLP does not
always outperform a shallower MLP for detecting rare audio
events in synthesised audio due to different number of pa-
rameters in the MLPs especially there are more parameters
engaged in the MLPs.

5. CONCLUSION

In this paper, we study the influence when the size of layers
and the number of layers are varied so as to freeze the total
number of parameters. In the case of different numbers of pa-
rameters engaged, we found that shallow neural network can
outperform the neural network with deep architectures. Thus
given a constraint on total number of parameters, a deep MLP
cannot guarantee the success of rare audio event detection in
synthesised audio.

From the results presented, given a hardware platform
whose source budget is engaged, the best performance of the

(a) N =12K

{N,L} | BabyCry | Glass Break | Gun Shot
{12K,1} 0.377 0.424 0.348
{12K, 2} 0.324 0.339 0.283
{12K, 3} 0.280 0.288 0.243
{12K,4} 0.247 0.261 0.229
{12K,5} 0.248 0.277 0.369

(b) N = 80K

{N,L} | BabyCry | Glass Break | Gun Shot
{80K,1} 0.564 0.573 0.538
{80K, 2} 0.539 0.534 0.513
{80K, 3} 0.462 0.488 0.470
{80K,4} 0.464 0.462 0.229
{S0K,5} | 0459 0.468 0.494

©) N = 120K

{N,L} Baby Cry | Glass Break | Gun Shot

{120K, 1} 0.583 0.592 0.569
{120K, 2} 0.550 0.569 0.550
{120K, 3} 0.520 0.543 0.541
{120K,4} 0.498 0.522 0.525
{120K,5} 0.500 0.522 0.531

Table 4. The ratio of weights inactivity with different number
of parameters N engaged in MLPs. For presentation { N, L},
N represents the total number of parameters in MLPs and L
represents the number of hidden layers. A smaller number
indicates that the weights in MLPs are more active.

hardware may be introduced by a shallower DNN rather than
a deeper DNN when the budget of memory is adequate.
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