
SCALABLE ENERGY DISAGGREGATION VIA SUCCESSIVE SUBMODULAR
APPROXIMATION

Faisal M. Almutairi?, Aritra Konar†, and Nicholas D. Sidiropoulos†

? Dept. of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN
† Dept. of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA

ABSTRACT
Energy disaggregation is the task of decomposing the aggregated
power consumption readings of a household into its constituent parts.
In this paper, we propose a supervised, non-parametric framework
for energy disaggregation. We demonstrate that the problem is equiv-
alent to maximizing a set-function subject to combinatorial constraints,
which is NP–hard in its general form. A simple polynomial-time
successive approximation algorithm which exploits submodularity
per set-block to iteratively maximize a sequence of global lower
bounds of the objective function is proposed for obtaining approxi-
mate solutions. Experiments on real data indicate the superior disag-
gregation performance and scalability of our approach over a state-
of-the-art parametric Factorial Hidden Markov Model based frame-
work employing convex relaxation.

1. INTRODUCTION
Reducing electricity usage in households is important for improv-
ing the efficiency of the power grid and mitigating the adverse effect
of energy consumption on the environment. Energy disaggregation
(also known as Non-Intrusive Load Monitoring (NILM)) seeks to in-
form residents about the power consumption of specific appliances in
their household by decomposing the aggregated power of all appli-
ances obtained from smart meter readings into its constituent parts.
Accurately extracting the appliance-level power consumption helps
in providing detailed and informative billing to consumers which has
been shown to gain costumers’ appreciation leading to reduced con-
sumption [1].

NILM was originally proposed in [2,3], wherein a classification-
based approach was adopted for disaggregation. These methods rely
on classifying switching events in the aggregated signal by assign-
ing them to the correct appliance after the switching characteristics
for each appliance are learned from a training phase. The draw-
back of such approaches is that they do not distinguish between
appliances with low power consumption. More recently, machine
learning techniques have been applied to NILM. One line of work
utilizes matrix/tensor factorization, where a latent factor/dictionary
is learned from a training set containing the ground truth about the
appliance-level consumption, and then this factor/dictionary is used
in the disaggregation task [4–6]. Although these factorization-based
techniques are conceptually appealing, the disaggregation accuracy
depends on performing a careful training process, requiring a large
amount of data to capture all the possible operating times [4], or as-
suming a common latent factor between training and test data [5, 6].

Another popular approach is based on using Factorial Hidden
Markov Models (FHMMs), where each appliance is modeled as a
HMM evolving independently of the others. The operating states of
each appliance are the hidden variables and the observed aggregated

Contact: almut012@umn.edu, (aritra,nikos)@virginia.edu.

power is a joint function of all hidden states [7–10]. The authors
of [8] put forth an additive FHMM (AFHMM) where the observed
power is the sum of the hidden states – the assumption being that
the difference between two successive observations corresponds to
a change in at most one HMM (appliance). This approach is unsu-
pervised (i.e., the model parameters and appliance power consump-
tions are learned from the aggregated signal) and accounts for out-
liers (rarely used appliances). However, parameter identification can
be an issue, and performing exact inference requires solving a chal-
lenging combinatorial optimization problem with boolean variables.
As a result, the authors resort to relaxing the combinatorial con-
straints to obtain a convex programming problem. This relaxation-
based approach can work well if the assumption that only one ap-
pliance may change state at any given ‘time’ (interval between sub-
sequent power measurements) is valid. Recently, Zhong et al. [10]
proposed a supervised model which incorporates additional informa-
tion in AFHMM by constraining the total power consumed by each
appliance state to a predefined value (learned from training data).
The downside is that adding these extra constraints makes the model
more complicated compared to basic AFHMM. As a result, the au-
thors resort to adding extra variables and relaxing them in addition
to relaxing the combinatorial constraints in order to obtain a convex
optimization problem. Furthermore, while the relaxed problem can
be optimally solved in polynomial-time using general-purpose con-
vex programming solvers, this still incurs significant computational
complexity for large-scale problem instances.

In this paper, we introduce a new supervised framework for
energy disaggregation. We also learn device states and consump-
tion levels from training data, but, unlike FHMMs, our approach
is non-parametric, and it does not hinge on the assumption that at
most one device can change state at any given time (interval) 1.
We demonstrate that the resulting combinatorial optimization prob-
lem can be posed as a constrained set-function maximization prob-
lem, which is NP–hard in its general form. A block successive
approximation scheme which exploits per-block submodularity of
the objective function is devised to obtain a discrete optimization
analogue of the well known majorization-minimization (MM) algo-
rithm [11–13]. This allows us to obtain a simple polynomial-time
approximation algorithm that iteratively maximizes a sequence of
global lower bounds of the objective function. The solution sequence
generated by the algorithm is always guaranteed to be feasible for
the combinatorial constraints and also features monotonically non-
decreasing objective value. As opposed to the FHMM methods, it is
also extremely scalable, featuring very low per-iteration complexity.
Simulations conducted on real data demonstrate the effectiveness of
our approach in terms of disaggregation performance and scalability

1This assumption is made in [8, 9], but not in [10].

2676978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

compared to the state-of-the-art AFHMM method proposed in [10].
2. PROBLEM FORMULATION

For a given household outfitted with M appliances, let {yt}Tt=1 rep-
resent the sequence of aggregated power consumption readings for
the entire household over a finite time horizon T . The goal of energy
disaggregation is to infer the power consumption sequence of each
appliance from the aggregated readings; i.e., we wish to breakdown
yt intoM components of the form yt =

∑M
m=1 xm,t, where xm,t ∈

R+ denotes the power consumption of appliance m ∈ [M] :=
{1, · · · ,M} at time instant t ∈ [T] := {1, · · · , T}. It is assumed
that the power consumption profile of each appliance m ∈ [M] can
be approximated usingKm ≥ 2 states, where each state corresponds
to a particular mode of appliance operation (e.g., ‘completely on’,
‘partially on’, ‘standby’, ‘off’) with a constant power consumption
µ
(k)
m ∈ R+,∀ k ∈ [Km]. Since each appliance can operate in only

one state at a given t, we can represent
xm,t ≈ µT

mzm,t,∀ m ∈ [M],∀ t ∈ [T] (1)

where µm ∈ RKm
+ is a vector containing the power consumption

values across all states for appliance m and zm,t ∈ {0, 1}Km is the
state indicator vector of appliancem at time instant t (i.e., 1T zm,t =
1). Hence, the aggregated power consumption at instant t can be
approximated as yt ≈

∑M
m=1 µ

T
mzm,t. Provided that the power

consumption profiles {µm}Mm=1 are known apriori, at each instant
t ∈ [T], the problem boils down to determining the state vectors
{zm,t}Mm=1. However, this is an ill-posed task, since we wish to
infer the contribution of M appliances from only a single power
measurement. In order to reduce problem under-determinacy, we
will exploit the fact that in general, appliances change states infre-
quently over a short time scale. Thus, instead of performing disag-
gregation for each instant t ∈ [T], we will perform the task over the
entire time horizon jointly while enforcing temporal smoothness on
the evolution of the state indicator vectors {zm,t}(M,T)

(m,t=1). Formally,
our problem can be stated as follows

min
{zm,t}

(M,T)
(m,t=1)

T∑
t=1

(
yt−

M∑
m=1

µT
mzm,t

)2
−

M,T∑
m=1,
t=2

λmzTm,tzm,t−1 (2a)

s.t. zm,t ∈ {0, 1}Km ,1T zm,t = 1,∀ m ∈ [M], ∀ t ∈ [T]
(2b)

where the first summand of the cost function represents a least-squares
data fitting term, while the second summand is a smoothness-inducing
regularization function where each term maximizes the sum of cor-
relations between the state vectors associated with themth appliance
for the present and previous time instants. Finally, λm ∈ R+, ∀ m ∈
[M] are appliance-specific regularization parameters.

Note that (2) is a combinatorial optimization problem with {0, 1}
variables, and hence, can be equivalently expressed as the minimiza-
tion of a set-function subject to set constraints. In order to simplify
notation and express the problem in this form concisely, we first de-
fine µ := [µT

1 ,µ
T
2 , ...,µ

T
M]T , zt := [zT1,t, z

T
2,t, ..., z

T
M,t]

T , A :=

µµT , and bt = 2ytµ. We now represent (2) using set notation as
follows: first, define Sm,t ⊂ Vm := [Km] to be the set of states of
appliance m ∈ [M] at time t ∈ [T]. Since each appliance can only
occupy one state at a time, we have |Sm,t| = 1. Next, we define
the overall set of states at each time St := {S1,t,S2,t · · · ,SM,t}.
Note that St can be represented as a proper subset of a larger ground
set V := ∪M

m=1 Vm (here the union is disjoint), with a maximum of
K :=

∑
m∈[M]Km total states. In terms of St, the constraint that

each appliance can only occupy one state at a time can be equiva-
lently expressed as |St ∩ Vm| = 1,∀m ∈ [M]. With these defini-
tions, we can express the Boolean vector zt as the indicator vector of

St, i.e., zt := 1St , where zt(v) = 1,∀ v ∈ St and zt(v) = 0 other-
wise. Furthermore, each individual term of the regularization func-
tion can be expressed as |Sm,t ∩ Sm,t−1|, ∀ m ∈ [M], ∀ t ∈ [T],
where |.| denotes the cardinality of a set, and ∩ is the intersection be-
tween sets. Since (2) is in minimization form, temporal smoothness
is enforced by equivalently maximizing the overlap of the subset of
states Sm,t and Sm,t−1. Putting everything together, in terms of set
notation, problem (2) can be equivalently expressed as

min
S∈I

{
F (S) : =

T∑
t=1

(
1
T
StA1St − bT

t 1St

)
−

T∑
t=2

M∑
m=1

λm|Sm,t ∩ Sm,t−1|
} (3)

where I := I1 × · · · × IT and It := {St ⊂ V : |St ∩ Vm| =
1, ∀m ∈ [M], ∀ t ∈ [T]} denotes the family of subsets which allow
the selection of only one state per appliance at every time instant.
The proposed formulation has the following salient features: i) it
is non-parametric, and ii) it allows multiple appliances to change
states at a given time instant, as opposed to the FHMM-based ap-
proaches in [8, 9] which allow at most one appliance to change state
at a time. While minimizing set-functions exactly is NP–hard in its
general form [14, 15], in the next section, we demonstrate that the
cost function of (2) exhibits a special property which allows the de-
velopment of a simple polynomial-time approximation algorithm.

3. PROPOSED APPROACH
Given a ground set of N elements V := {v1, · · · , vN}, consider
the set-function f : 2N → R which assigns a real value to any
subset S ⊆ V . Notable amongst set-functions is the sub-class of
submodular set-functions, which can be formally defined as follows.
Definition 1. [Submodular function] [16, Definition 2.1] The set
function f is said to be submodular if and only if

f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y) (4)
for all X ⊆ Y ⊆ V \ v. That is, given any subset of elements X ,
the marginal gain derived by adding an element v to X does not in-
crease when we instead add v to the superset Y . Hence, submodular
functions exhibit a natural diminishing returns property.
Definition 2. [Modular function] [16, Proposition 2.1] A set func-
tion y is said to be modular if and only if there exists a vector y ∈
RN for all subsets X ⊆ V such that y(X) = yT

1X =
∑

e∈X y(e).
Note that such a function satisfies the inequality in Definition 1 with
equality.

In order to establish the link between submodular functions and
the problem at hand, it will be convenient to equivalently express (3)
in maximization form as

max
S∈IT

{
−F (S) :=

T∑
t=1

gt(St) +
T∑

t=2

h(St,St−1)

}
(5)

where we have defined gt(St) := −1T
StA1St+bT

t 1St and h(St,St−1) :=∑M
m=1 λm|Sm,t∩Sm,t−1|. While−F (S) is not a submodular func-

tion, we will demonstrate that −F (St|S¬t) is submodular in each
variable set St while fixing the other sets S¬t.

Note that −F (St|S¬t) = gt(St) + h(St|St−1) + h(St|St+1)
(except for t = 1 (t = T), where the regularization component only
includes the third (second) term, respectively). Since the class of
submodular functions is closed under non-negative linear combina-
tions, it suffices to establish that each of the three terms comprising
−F (S|S¬t) is submodular. First, consider gt(St): by construction,
−A has all its off-diagonal elements non-positive (since µ ≥ 0 ⇒
A = µµT ≥ 0), which is both a necessary and sufficient condition
for −1T

StA1St to be submodular [16, Proposition 6.3]. Meanwhile,

2677

simple inspection reveals that the second term bT
t 1St is modular.

Hence, gt(St) is submodular. For the regularization functions, fixing
St−1, we can express h(St|St−1) = cT1St (i.e., in modular form),
where c := W1St−1 and W := blkdiag(λ1IK1 , · · · , λMIKM).
Similarly, fixing St+1, we obtain h(St|St+1) = dT

1St , where
d := W1St+1 . Hence, each block subproblem

max
St∈It

− F (St|S¬t) (6)

corresponds to maximizing a function that is submodular in St sub-
ject to the constraints It. This motivates using a block coordinate
descent (BCD) algorithm for updating the variable sets {St}Tt=1 in
alternating fashion, where the update for each block requires opti-
mally solving (6). However, (6) is an NP–hard problem in its gen-
eral form, which prevents efficient solution. Nevertheless, there exist
effective polynomial-time approximation algorithms for (6) in the
following special cases. If the objective function of (6) is mono-
tone, then it is well known that a simple greedy algorithm guar-
antees a 0.5-factor approximation for all instances of (6) [17]. A
more sophisticated algorithm employing a nonlinear continuous re-
laxation followed by a rounding procedure was proposed in [18]
which yields an improved approximation factor of (1 − 1/e) for
(6). As the function −F (St|S¬t) is not monotone (the culprit being
the term −1T

StA1St), this precludes us from applying these algo-
rithms. For constrained submodular maximization of non-negative,
non-monotone functions, [19] proposed a polynomial-time algorithm
which guarantees a 0.385-factor approximation. Unfortunately,
−F (St|S¬t) is not guaranteed to be non-negative either (depend-
ing upon the choice of {λm}Mm=1). For such submodular functions,
which are neither monotone nor non-negative, even verifying whether
the maximum is larger than zero or not is NP–hard in general [20].
Hence, in its general form, (6) is inapproximable via polynomial-
time algorithms.

To overcome these difficulties, we resort to modifying the BCD
algorithm by maximizing a judiciously designed approximation of
the objective function during each block iteration. Our approach
can be viewed as a a discrete optimization analogue of the popu-
lar BSUM algorithm [11], where we iteratively update {St}Tt=1 in
cyclic fashion by maximizing a sequence of global lower bounds of
−F (S) in the following manner. Starting from an initial solution set
S(0) ∈ I, at each iteration k ∈ N, we seek to update the set-block
t = (kmodT)+1 while keeping the other blocks fixed. As the per-
block subproblem (6) is hard to solve, we utilize a discrete variant of
the majorization-minimization (MM) principle proposed in [14, 15]
to construct a modular set-function mt(St) to approximate gt(St)
about the current solution set S(k)

t such that: i) gt(St) ≥ mt(St),
∀St ∈ I and ii) gt(S(k)

t) = mt(S(k)
t). Thus, on replacing gt(St)

by its modular lower bound mt(St), at each iteration, we obtain a
subproblem of the form
max
St∈It

{ut(St|S¬t) := mt(St) + h(St|St−1) + h(St|St+1)} (7)

which is equivalent to maximizing a global modular lower bound of
−F (S). The upshot is that (7) can be solved optimally in O(K)
time. To see this, note that as ut(St|S¬t) is a modular function by
construction, we can equivalently write (7) as

max
St∈It

uT
t 1St (8)

For the purpose of computing an optimal solution, it suffices to in-
spect the entries of ut corresponding to each subset Sm,t, and obtain
the index of the largest entry, ∀ m ∈ [M]. This can be accomplished
via a simple linear scan, which requires O(K) time.

Note that the applicability of the scheme hinges upon our ability
to compute a modular lower bound of gt(St) which satisfies the de-

sired properties. This can be accomplished by utilizing the notion of
submodular subdifferentials, which is formally defined as follows.
Definition 3. [Subdifferential Sets of Submodular functions] [21,
Section 6.2] The subdifferential set of a submodular set-function g
for a given set Y ⊆ V is defined as
∂g(Y) := {y ∈ RN : g(X)− g(Y) ≥ y(X)− y(Y),∀ X ⊆ V}

Let vg
Y ∈ ∂g(Y) denote a subgradient of g at Y . We will require

to compute such a subgradient for constructing our desired modular
lower bound. In order to do so, it suffices to compute any element in
the set of extreme points of ∂g(Y), which can be exactly character-
ized as follows.
Proposition 1. [Extreme points of submodular subdifferentials]
[21, Theorem 6.11] For each Y ⊆ V , a vector vg

Y is an extreme point
of ∂g(Y) if and only if there exists a maximal chain C : ∅ = S(0) ⊂
S(1) ⊂ · · · ⊂ S(N) = V which includes Y (i.e., Y = S(j) for
some j ∈ [N]) such that the modular function vgY associated with
vg
Y satisfies

vgY(S
(i)\S(i−1)) = vgY(S

(i))− vgY(S
(i−1))

= g(S(i))− g(S(i−1)), ∀ i ∈ [N]
(9)

In [22], Edmonds presented a greedy procedure for computing such
an extreme point. Let π be a permutation of V which assigns the
elements in Y to the first |Y| positions (i.e., π(i) ∈ Y, ∀ i ≤ |Y|)
2. Every such permutation can be shown to define a maximal chain
S(0)
π ⊂ S(1)

π ⊂ ... ⊂ S(N)
π with elements S(0)

π = ∅, and S(i)
π =

{π(1),π(2), ...,π(i)}, ∀ i ∈ [N]. Note that we have S|Y|π = Y .
Using this chain, we define a vector vg

Y,π ∈ RN with entries

vg
Y,π(π(i)) =

{
g(S(1)

π) if i = 1

g(S(i)
π)− g(S(i−1)

π), otherwise
(10)

With vg
Y,π obtained, we define the following modular function for

all subsets S ⊆ V
vgY,π(S) :=

∑
e∈S

vg
Y,π(e) (11)

By construction, it can be verified that vg
Y,π satisfies the conditions

listed in Proposition 1 and thus, is an extreme point of ∂g(Y). Fur-
thermore, it has been shown that [23] for every Y ⊆ V , the modular
function vgY,π(S) satisfies the following properties: i) vgY,π(S) ≤
g(S), ∀ S ⊆ V , and ii) vgY,π(S

(i)
π) = g(S(i)

π), ∀ i ∈ [N]. Thus, the
modular approximation vgY,π(S) of g(S) about the set Y satisfies
the desired properties we listed earlier.

Hence, in our aforementioned procedure, given the current so-
lution set S(k), in order to update St, we first generate a permu-
tation π

(k)
t to construct a tight modular lower bound mt(St) =

vgt
S(k)
t ,π

(k)
t

(St) of gt(St) about S(k)
t via a greedy algorithm. We thus

obtain a modular global lower bound ut(St|S¬t) of −F (S) which
is tight at S = S(k) and can be efficiently maximized to global op-
timality (via a linear scan in O(K) time) at each iteration. Overall,
we obtain Algorithm 1, which we term as BSMA (Block Successive
Modular Approximation). Note that BSMA generates a sequence of
solution sets {S(k)}k≥0 which always satisfy the constraints I. In
addition, we have the following chain of inequalities

F (S(k+1)) ≤ F (S(k)) ≤ · · · ≤ F (S(1)) ≤ F (S(0)) (12)
since BSMA equivalently minimizes a locally tight upper bound of
F (S) at each iteration. Hence, BSMA monotonically reduces the
cost function of (5).

2The remaining N − |Y| positions of π can be arbitrarily assigned.

2678

Algorithm 1 : Block Successive Modular Approximation (BSMA)

Initialization: Set k := 0,S(0) ∈ I.
Repeat
• Set t = (kmodT) + 1

• Generate permutation π
(k)
t using S(k)

t

• Compute modular approximation vgt
S(k)
t ,π

(k)
t

(St) of gt(St)

about S(k)
t via greedy algorithm

• Compute S(k+1)
t = argmax

St∈I
u(St) via linear scan

• Set S(k+1)
r = S(k)

r , ∀ r 6= t

• Set k := k + 1.

Until maximum number of iteration is reached

4. EXPERIMENTAL RESULTS
We compare the performance of BSMA against a state-of-the-art
FHMM method, namely AFHMM+SAC proposed in [10]. As men-
tioned earlier, in this model, additional constraints are added to AFHMM
to improve accuracy. These constraints encourage the total power as-
signed to each appliance to adhere to a power budget learned from
the training phase. To implement this baseline, we use the Matlab
modeling language CVX (as done in [10]). We also implemented
BSMA in Matlab following the steps outlined in Algorithm 1.

For performance evaluation, we use the ECO3 data set [24], a
publicly available real dataset for NILM research. ECO contains
power readings (both aggregated and plug-level for some appliances)
for six Swiss households at 1 Hz frequency. Here, we focus on
Household 2 since it has the largest number of appliances to be
tested. Although our algorithm works perfectly with this high fre-
quency data, we had to down-sample to 1 reading/minute because
the baseline we compare to does not work with large data and re-
quires the test set to be divided into segments.

We train both models on one week and test on another week of
data. In the training phase, for AFHMM+SAC, we learn the follow-
ing model parameters for each appliance: the initial and transition
probabilities, the power budget and the state vector µm. Our al-
gorithm only requires knowledge of {µm}Mm=1, which is estimated
by performing k-means clustering on the appliance consumption se-
quence {xm,t}Tt=1 as done in [10]. The number of clusters Km for
each appliance is chosen from the behavior of its power consumption
sequence, which was set to be Km ∈ {2, 3, 4, 5}. The training set
was used to tune the penalty parameters {λm}Mm=1 for both meth-
ods4 and to choose the number of iterations for our algorithm. Fig-
ure 1 provides a demonstration of the evolution of the cost function
versus BSMA iterations when applied to the test set. For evaluation,
we use two metrics: i) Root Mean Square Error (RMSE) to pro-
vide a measure that accounts for individual differences between true
and predicted power at each time instant; and 2) Signal Aggregated
Error (SAE) to provide a measure that indicates the error in power
over a test period. The latter is a more informative metric because a)
disaggregation is done over a billing period, and b) it allows for com-
parison amongst appliances since it is normalized. These metrics are
formally defined as

RMSEm :=

√∑T
t=1(xm,t − x̂m,t)2

T
, (13)

3https://www.vs.inf.ethz.ch/res/show.html?what=eco-data
4For AFHMM+SAC, the choice of penalty parameters dictates how strin-

gently the power consumption constraints are enforced.

SAEm :=
|
∑T

t=1 xm,t −
∑T

t=1 x̂m,t|∑T
t=1 xm,t

(14)

where xm,t and x̂m,t denote the true and inferred power consump-
tion for appliance m at time t.

Fig. 1. Demonstration of the non-increasing cost value

Table 1. Comparing Performance
RMSE SAE

Appliance BSMA AFHMM+SAC BSMA AFHMM+SAC
Tablet 1.606 1.748 0.995 0.945

Dishwasher 233.707 209.333 0.592 0.909
Air exhaust 5.246 4.708 0.374 0.989

Fridge 55.932 48.061 0.120 0.166
Entertainment 93.297 105.968 0.613 0.867

Freezer 55.581 65.371 0.672 0.900
Kettle 178.896 172.268 0.920 0.998
Lamp 27.369 27.352 0.806 0.879

Laptops 30.315 30.049 0.496 0.949
Stove 225.028 237.647 0.835 0.995
TV 71.144 83.114 0.726 0.947

Stereo 23.108 23.108 0.185 0.253
Average 83.435 84.061 0.611 0.817

Table 2. Comparing Running Time
BSMA AFHMM+SAC

Time (minutes) 14.3 605.3

Table 1 depicts the performance of the methods. In terms of
RMSE, BSMA improves the baseline for half of the appliances and
on average. In terms of SAE, our approach significantly outperforms
the baseline for almost all appliances. We point out that BSMA
always improves the baseline for appliances with Km ≥ 3 (e.g.,
Freezer, and Stove)–such appliances are problematic for general NILM
approaches [25,26]. The overall performance of BSMA is very satis-
factory considering the fact that it does not incorporate the additional
information utilized by AFHMM+SAC. In Table 2, we show the tim-
ing results for both approaches when testing on a week of data with
1 reading/minute. Clearly, BSMA exhibits a vastly superior running
time compared to SAC.

5. CONCLUSIONS
We proposed a non-parametric, supervised learning framework for
energy disaggregation, which allows multiple appliances to change
states at a given time instant. The resulting combinatorial optimiza-
tion problem was posed as maximizing a general set-function, for
which we devised a discrete successive approximation algorithm which
exploits submodularity per set-block to iteratively maximize a se-
quence of global lower bounds of the objective function. The algo-
rithm exhibits monotonically non-decreasing objective value, main-
tains feasibility of the generated iterates, and enjoys low per-iteration
complexity. Experiments on a real NILM dataset revealed the very
promising performance of our approach over a state-of-the-art FHMM
method employing convex relaxation.

2679

6. REFERENCES

[1] S. Darby, “The effectiveness of feedback on energy consump-
tion,” Environmental Change Institute, University of Oxford,
Tech. Rep., Apr. 2006.

[2] G. W. Hart, “Nonintrusive appliance load monitoring,” Pro-
ceedings of the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.

[3] F. Sultanem, “Using appliance signatures for monitoring res-
idential loads at meter panel level,” IEEE Transactions on
Power Delivery, vol. 6, no. 4, pp. 1380–1385, 1991.

[4] J. Z. Kolter, S. Batra, and A. Y. Ng, “Energy disaggregation
via discriminative sparse coding,” in Advances in Neural In-
formation Processing Systems, Vancouver, British Columbia,
Canada, Dec. 2010, pp. 1153–1161.

[5] M. Figueiredo, B. Ribeiro, and A. de Almeida, “Electrical sig-
nal source separation via nonnegative tensor factorization us-
ing on site measurements in a smart home,” IEEE Transactions
on Instrumentation and Measurement, vol. 63, no. 2, pp. 364–
373, Feb 2014.

[6] E. Elhamifar and S. Sastry, “Energy disaggregation via learn-
ing ‘powerlets’ and sparse coding,” in 29th AAAI Conference
on Artificial Intelligence, Austin Texas, USA, Jan. 2015, pp.
629–635.

[7] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, “Unsuper-
vised disaggregation of low frequency power measurements,”
in Proceedings of the SIAM Conference on Data Mining, Mesa,
Arizona, USA, Apr 2011, pp. 747–758.

[8] J. Z. Kolter and T. Jaakkola, “Approximate inference in ad-
ditive factorial HMMs with application to energy disaggre-
gation,” in 15th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), La Palma, Canary Islands,
Apr. 2012, pp. 1472–1482.

[9] M. Zhong, N. Goddard, and C. Sutton, “Interleaved factorial
non-homogeneous hidden Markov models for energy disaggre-
gation,” in The Neural Information Processing Systems work-
shop on Machine Learning for Sustainability, Lake Tahoe, NV,
USA, 2013.

[10] ——, “Signal aggregate constraints in additive factorial
HMMs, with application to energy disaggregation,” in Ad-
vances in Neural Information Processing Systems (NIPS),
Montréal, Canada, Dec 2014, pp. 3590–3598.

[11] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified con-
vergence analysis of block successive minimization methods
for nonsmooth optimization,” SIAM Journal on Optimization,
vol. 23, no. 2, pp. 1126–1153, 2013.

[12] F. Facchinei, L. Lampariello, and G. Scutari, “Feasible meth-
ods for nonconvex nonsmooth problems with applications in
green communications,” Mathematical Programming, pp. 1–
36, 2016.

[13] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-
minimization algorithms in signal processing, communica-
tions, and machine learning,” IEEE Transactions on Signal
Processing, vol. 65, no. 3, pp. 794–816, 2017.

[14] M. Narasimhan and J. A. Bilmes, “A submodular-
supermodular procedure with applications to discriminative
structure learning,” in Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence, Edinburgh, Scotland, Jul
2005, pp. 404–412.

[15] R. Iyer and J. Bilmes, “Algorithms for approximate minimiza-
tion of the difference between submodular functions, with ap-
plications,” in Proceedings of the 28th Conference on Uncer-
tainty in Artificial Intelligence, Catalina Island, CA, Aug 2012,
pp. 407–417.

[16] F. Bach, “Learning with submodular functions: A convex op-
timization perspective,” Foundations and Trends in Machine
Learning, vol. 6, no. 2-3, pp. 145–373, 2013.

[17] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An anal-
ysis of approximations for maximizing submodular set func-
tions—part 1,” Mathematical Programming, vol. 14, no. 1, pp.
265–294, 1978.

[18] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximiz-
ing a monotone submodular function subject to a matroid con-
straint,” SIAM Journal on Computing, vol. 40, no. 6, pp. 1740–
1766, 2011.

[19] N. Buchbinder and M. Feldman, “Constrained submodular
maximization via a non-symmetric technique,” arXiv preprint
arXiv:1611.03253, 2016.

[20] U. Feige, V. S. Mirrokni, and J. Vondrak, “Maximizing non-
monotone submodular functions,” SIAM Journal on Comput-
ing, vol. 40, no. 4, pp. 1133–1153, 2011.

[21] S. Fujishige, Submodular functions and optimization, 2nd ed.,
ser. Annals of Discrete Mathematics. Elsevier, 2005, vol. 58.

[22] J. Edmonds, “Submodular functions, matroids, and certain
polyhedra,” Edited by G. Goos, J. Hartmanis, and J. van
Leeuwen, vol. 11, 1970.

[23] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid
method and its consequences in combinatorial optimization,”
Combinatorica, vol. 1, no. 2, pp. 169–197, Jun. 1981.

[24] C. Beckel, W. Kleiminger, R. Cicchetti, T. Staake, and S. San-
tini, “The eco data set and the performance of non-intrusive
load monitoring algorithms,” in Proceedings of the 1st ACM
International Conference on Embedded Systems for Energy-
Efficient Buildings (BuildSys 2014), Memphis, TN, USA, Nov.
2014, pp. 80–89.

[25] S. Barker, S. Kalra, D. Irwin, and P. Shenoy, “Empirical char-
acterization and modeling of electrical loads in smart homes,”
in International Green Computing Conference Proceedings
(IGCC), Arlington, Virginia, June 2013, pp. 1–10.

[26] N. Batra, H. Wang, A. Singh, and K. Whitehouse, “Matrix fac-
torisation for scalable energy breakdown.” in The 31st AAAI
Conference on Artificial Intelligence (AAAI-17), San Fran-
cisco, CA, USA, Feb. 2017, pp. 4467–4473.

2680

