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ABSTRACT

This paper presents a novel problem of detection and local-
ization of anomalous events due to a certain class of objects
in video data with applications to smart surveillance. A base-
line system is proposed that uses a convolutional neural net-
work (CNN) to generate pixel level masks corresponding to
objects of a class of interest. A Restricted Boltzmann Ma-
chine (RBM) is then trained on the mask to learn patterns of
normal behavior. The free energy of the RBM is used to de-
tect the presence of an anomaly while the reconstruction error
is used to localize the anomaly. Our approach is scalable to a
low power and energy constrained setting with 1930.48 ms of
latency and 4826 mJ energy consumed per frame on a mGPU.

Index Terms— Intelligent Video Surveillance, Anomaly
Detection, IoT, RBM, CNN

1. INTRODUCTION

Increasing number of IoTs (Internet of Things) has led to a
sharp increase in the amount of data generating nodes thus
increasing the burden of processing at the host. Consider for
example a surveillance camera network which can consist of
multiple cameras transmitting video feeds to the host. It is im-
possible for a human operator to monitor each of these feeds
in an efficient manner. This not only poses a security risk but
also stretches the transmission bandwidth to its limit.

The end goal of intelligent video surveillance is to detect
interesting/anomalous parts of the video. Automated anoma-
lous event detection can be applied to detect and send impor-
tant parts of a video [1]. For example, a car can be categorized
as anomalous if its stopped on a highway full of regular mov-
ing traffic.

Existing video anomaly detection frameworks have two
limitations. First, they adopt a semi-supervised training ap-
proach to the problem which requires generating a dataset of
normal events. This does not scale well to multiple sensor
nodes due to scene variations and complexity of the training
process. For example, Xu et. al train deep autoencoders using
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Fig. 1: Separation of Anomalous Events based on Target Class of
Interest

50 million image patches [2]. Second, they lack the capability
of separation of anomalies based on objects of a certain class.

This capability can be motivated by the fact that the focus
of the observer depends highly on the scene and may shift as
the scene changes e.g. a traffic camera on a highway needs to
focus only on the vehicles. Another example is presented in
Fig 1.

We solve the above-mentioned problems by developing
an anomalous event detection framework that is (a) trainable
in an unsupervised manner to account for scene variabilities
and scene progression, (b) has low train and test complex-
ity allowing an edge level implementation and (c) provides
reconfigurable target class based separability. Our system is
composed of a pre-trained segmentation CNN that generates
pixel level masks for objects of a certain class. These masks
are then used to train a RBM, an energy based model. The en-
ergy of the RBM is used to detect the presence of anomalies.

We validate our approach on some anomaly detection
datasets. On the UCSD Ped 2 Dataset we can detect 11
out of the 12 anomalies present and are able to perform
source separation based on target class. On a mobile GPU
we achieve 1930.48/4826 ms/mJ (CNN + RBM) of inference
latency/energy and 8.95/22 ms/mJ of train latency/energy
(RBM only). We validate the unsupervised training capabil-
ity of our system in a qualitative manner using examples from
the AVSS 07 Parked Vehicle Dataset and the UMN Dataset.
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2. RELATED WORK

In prior work on anomaly detection, the processing pipeline is
divided into a feature extraction module followed by cluster-
ing or reconstruction based on the extracted features. Semi-
supervised approaches have been the most popular due to the
rare nature of abnormal data. In a semi-supervised system, a
training set of normal examples are provided, and a model is
learned. Any examples that deviate from the learned model
are classified as anomalies.

For feature extraction, hand-crafted features such as HOG
[3], HOF [3], 3D gradients [4] etc. have been the norm un-
til the rise of deep learning based feature extraction methods
such as autoencoders [2, 5, 6], LSTMs [5], 3D-CNN [7]. For
anomaly detection, clustering based approaches construct a
decision boundary such as one-class SVMs [2]. Reconstruc-
tion cost based approaches include LSTMs [5], autoencoders
[6] and sparse coding based approaches [3, 8, 9, 4].

3. SYSTEM ARCHITECTURE

We propose a system that can separate out the target class of
choice and learn the activity pattern of that specific class. An
object segmentation/detection module (CNN) is used to gen-
erate pixel level masks/bounding boxes for a class of interest.
The class-specific mask is then fed into a RBM which gener-
ates a scalar value called the free energy score.

The free energy is used to determine whether an anoma-
lous event has occurred based on past examples. In addition
to the free energy, the RBM is also used to generate a recon-
struction. A combination of both measures is used to detect
and localize anomalies. The system block diagram is pre-
sented in Fig 2.

CNN: We use a segmentation CNN from [10] with a
VGG-16 backbone [11]. The CNN is pre-trained on Ima-
geNet and then fine-tuned on the PASCAL VOC/MS COCO
segmentation dataset. Fully convolutional layers generate a
score map corresponding to the position of classes of interest.
The score map is up-sampled and combined with the output
of the pooling layers to generate a segmentation map equal in
dimensions to the input image.

RBM: The Restricted Boltzmann Machine is a generative
stochastic neural network that is described by an energy func-
tion and can be represented in the form of a bi-partite graph
with undirected edges and no intra-layer connections. For an
input v and hidden vector h, the energy of the RBM is given
by (1) where W is the weight matrix, b is the hidden layer bias
and c is the visible layer bias.

E(v, h) = −cT v − bTh− vTWh (1)

The joint probability of the configuration can be expressed
in terms of the energy function by (2) where Z is the partition
function. As Z is the sum of the energies of all possible con-
figurations of the RBM, it is intractable to compute.

Fig. 2: System Level Block Diagram for Class-Aware Anomaly De-
tection

P (v, h) =
e−E(v,h)

Z
(2)

The marginal probability of the visible layer vector can
be found by summing over all the possible configurations of
the hidden layer vector. Since there are no intra-layer con-
nections, the conditional probability of the hidden layer given
the visible layer and vice versa factorizes into a product of the
individual probabilities of the neurons. For a binary-binary
RBM, the conditional probabilities are expressed by (3) and
(4) where σ is the sigmoid function. The free energy for the
binary case is then expressed by (5).

P (h = 1 | v) = σ(Wv + b) (3)

P (v = 1 | h) = σ(WTh+ c) (4)

F (v) = −cT v −
∑
h

log(1 + eWv+b) (5)

The RBM is trained to maximize the likelihood of the
parameters for a given set of data. This is analogous to in-
creasing the energy of the model for unseen examples and
decreasing the energy of the model for seen examples. Since
Z is intractable, approximations to the likelihood are needed.
A fast approximate algorithm, Contrastive Divergence (CD),
for training the RBM is described by Hinton et. al [12].

In CD-1, the visible units are initialized to the training ex-
amples. A forward pass generates activation values for the
hidden units. The activation values are then used to sample
from a Bernoulli distribution. A backward pass on the hidden
layer states generates the reconstruction. The loss function is
defined as the differences in energies of the input and recon-
struction.

At test time, the energies are ranked and compared against
past values. If the free energy is high, then the sample is
anomalous. A pixel-level difference of the reconstruction and
the input sample is taken to localize the anomalous object.
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Fig. 3: Free Energy Progression for AVSS 07 PV Dataset. The free
energy of the system rises when the truck parks but gradually be-
comes lower as the truck stays there indicating evolving behavior

Dataset Anomaly Detection Task

Name
No.
Events

Correct Detection/ False Alarm
Ours State of the Art

UCSD Ped 1 40 20/4 38/6 [6]
UCSD Ped 2 12 11/1 12/1 [6]

Table 1: Detection Results on the UCSD Ped Dataset
[13]

Semi-Supervised Anomaly Detection: In semi-supervised
anomaly detection, we are provided with a set of normal ex-
amples even though the examples are not annotated. In this
case, we train the RBM in an offline manner with examples
from the training data. For the test examples we do not update
the weights of the RBM.

Unsupervised Anomaly Detection: In a real-world case,
training data may not be available for every scene and thus
a framework is desired which can evolve with the dynamics
of the scene as it progresses. Thus, we propose a streaming
algorithm where the RBM is trained with examples as they are
sampled and the free energy of the RBM is queried to detect
the presence of anomalies.

An example is shown in Fig. 3 where we apply the algo-
rithm to a short, cropped video sequence from the AVSS 07
Parked Vehicle Dataset [14]. The evolution of the free energy
is shown as the scene progress. At first, only cars are present
followed by a truck that parks on the side. The system first
detects the truck as an anomaly but soon learns to model it as
a normal behavior. In Fig. 4 the evolution of the weight ma-
trix for one of the RBM neurons is shown. In Fig. 8 we apply
the algorithm to the UMN Dataset. The free energy decreases
gradually but rises as the panic event happens.

4. EXPERIMENTS

Verification of the semi-supervised algorithm is performed
on two real-world datasets i.e. UCSD and Avenue Dataset.
The streaming algorithm is applied on the UMN Dataset and
the AVSS 07 Dataset. For the semi-supervised version, each
RBM is trained for 30 epochs with a learning rate of 0.01 and
with a minibatch size of 20. For the unsupervised version, the
RBM is trained in an online manner with a learning rate of

(a) Frame 0 (b) Frame 200 (c) Frame 400 (d) Frame 750

Fig. 4: Visualization of filter 0 (a) Random Initialization (b) After
frame 200 normal behavior is cars on road (c) After frame 400 truck
parked on side is normal behavior (d) After frame 750 as truck exits,
strength of road region increases

Dataset Anomaly Detection

Name
AUC/EER

Ours State of the Art

CUHK Avenue 77.26/26.9 70.2/25.1 [6]

Table 2: Detection Results on Avenue Dataset [4]

0.001 and minibatch size of 5.

4.1. UCSD Dataset

The UCSD Dataset [13] consists of grayscale videos of a typ-
ical pedestrian scene. The dataset is divided into two sets Ped
1 and Ped 2 with their respective train and test splits. Ped
1 contains 34 training clips of 200 frames each with spatial
resolution 158 x 238. Ped 2 contains 16 training clips at a
resolution of 240 x 360. The test set contains labelled anoma-
lies due to non-pedestrians such as bicycles, skaters, etc. and
some pedestrian behaviors such as loitering and uncommon
paths.

4 separate RBM networks are created for classes of inter-
est, i.e. person, bicycle, car and skateboard. Performance is
affected on Ped 1 due to poor detection performance on ob-
jects of bicycle class. Detection results are presented in Table
1. Some detected anomalies are shown in Fig. 6 and 7.

4.2. Avenue Dataset

The Avenue Dataset [4] consists of 16 clips for training and 21
clips for testing. Anomalies in this dataset include loitering,
irregular motion, irregular actions such as throwing etc. Some
detected anomalies on the Avenue Dataset are presented in
Fig. 5. Detection results are presented in Table 2. We achieve
an Equal Error Rate (EER) of 26.9% with 77.6 % Area Under
the Curve (AUC).

4.3. Class-Aware Separability

Depending on the class of interest, different anomalous events
are reported. In Fig. 6 and Fig. 7 we show class aware sep-
arability on the UCSD Dataset with separation of anomalies
produced due to the bicycle, cart and person class.
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(a) (b) (c) (d)

Fig. 5: Detected Anomalies on the Avenue Dataset (a) Wrong Direction (b) Loitering (c)(d) False Alarm in GT but detected by our framework
as anomaly (Anomalies highlighted in red. Best viewed in Color)

(a) (b) (c) (d)

Fig. 6: Detected Anomalies on UCSD Ped 1 (a) GT (b) SDAE+LSTM [5] (c) Our Framework (Bicycle) (d) Our Framework (Person)

(a) (b)

Fig. 7: Detected anomalies on the UCSD Ped 2 Dataset due to (a)
bicycle (b) cart

Module
No. Ops (MFLOPS)

Feed-
forward

Back-
Propagation

Total

CNN (VGG16) 15484 - 15484
RBM (625→ 800) x18 36 36 72

Table 3: Number of Operations per Module

Platform
Inference
Latency
(ms)

Inference
Energy
(mJ)

Train
Latency
(ms)

Train
Energy
(mJ)

ARM T760 1930.48 4826 8.96 22
EyeRiss 611.63 170 2.84 1
Tegra X1 (FP16) 319.51 1629 1.48 8

Table 4: Latency and Energy Consumption on Different Platforms

4.4. Latency and Energy Consumption

Latency and energy consumption of our framework was cal-
culated by estimating the number of operations per module.
Projections are made using reported operational efficiency of

Fig. 8: Evolution of free energy on scene 1 of the UMN Dataset

3 energy efficient platforms i.e. EyeRiss [15], Tegra X1 and
mGPU [16]. The estimated operations per module are pre-
sented in Table 3. The VGG-16 CNN requires 15.5 GFLOPs
for one forward pass over a 224 x 224 image. 18 RBMs with
(625→ 800) neurons each are used for block processing of
CNN output. Training each RBM consists of 2 forward passes
and one backward pass. Latency and energy numbers are pre-
sented in Table 4. Only the RBM is updated online hence the
lower numbers for training.

5. CONCLUSION

We have presented an anomaly detection pipeline that is able
to detect and localize class-specific anomalies and can be
trained in an unsupervised manner. Our approach is scalable
to a low power setting making it ideal for deployment in an
IoT. For future work, we intend to quantitatively analyze the
effectiveness of our unsupervised algorithm.
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