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ABSTRACT

Portfolio risk control is vital to financial institutions: investors
seek to build equities with the highest return but with min-
imum risk. However, a general phenomenon is significant
comovement among many financial signals, such as stocks
and futures. One investment strategy is to choose less cor-
related assets. Classic approaches quantifying such relation-
ships in real financial markets make it difficult to exclude fac-
tors such as market trends and autocorrelation. In this paper,
we propose a signal process perspective for quantitative mea-
surement. A machine learning based algorithm is designed to
model returns, taking account of market sensitivity, autocor-
relation, and relationships with other stocks. We then extend
the model training algorithm using regularized least square
and gradient descent to estimate parameters. A penalty factor
is designed in the optimization function to address extreme
large negative returns. After denoising common factors, the
learned pure relationship parameters are applied to construct
a relationship matrix. Finally, we use this matrix to build port-
folios by constrained optimization. Empirical experiments
on two stock datasets show that the proposed method out-
performs several state-of-the-art methods in terms of mean
average precision and cumulative returns.

Index Terms— financial signal, temporal relationship,
factor model, portfolio risk.

1. INTRODUCTION

The development of financial markets means that quantita-
tive measurement is essential for modern investment activi-
ties. Any investor who holds a portfolio of financial assets
wants to find better ways to control risks. Commonly, higher
returns are in accordance with larger risks [1]. Based on dif-
ferent situations, investors tend to confront two main issues:
1). Given a tolerant risk ratio, maximize the return of a port-
folio. 2). Given an expected return, minimize the investment
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risk. Both situations require effectively curbing the comove-
ment among portfolios [2, 3]. Therefore, selecting less inter-
related equities is becoming essential, as is finding a new way
to diagnose the temporal relationship among financial signals.

The first step requires modeling the return of financial se-
ries [4, 5]. Machine learning techniques are usually applied
to infer the distribution of variations by training with histori-
cal data [6–8]. Finding the relationship among financial sig-
nals is a key process of the above methods, either by building
a correlation or similarity matrix [9], [10] or by training a
model [11–13] from historical distribution.

These methods are hampered by two drawbacks: 1). The
relationship is built by historical data, which fails to exclude
noisy signals, such as market trends and autocorrelations. 2).
In order to curb the risk, finding the pure relationship in large
losses is the key problem. But above methods give equal
weight to both large and small losses.

Therefore, we propose a similarity measurement from
downside in financial signals to avoid large losses in portfo-
lios. First, we describe daily returns by a regression model.
Then we utilize the relationships as a regression factor, while
improving it’s purity by adding other two factors, market sen-
sitivity and autocorrelation. The large losses penalty param-
eter ϕ is designed to learn the relationship during downside.
In addition, as market sensitivity is volatile and the rela-
tionship among stocks tends to remain smooth, we propose
a regularized cost function that responds quickly to mar-
ket trends while simultaneously stabilizing the relationship
among stocks.

In brief, the main contributions in this paper can be sum-
marized as follows:

• Proposing a novel regression model to fit daily returns
by introducing the market sensitivity factor α, autocor-
relation parameter γ, and relationships of equities ωx,y .

• Providing a signal process perspective for financial en-
gineering. To the best of our knowledge, this is the first
study of exploring pure relationship to curb large losses
among financial signals by denoising market sensitivity
and autocorrelation.
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• Extending the model training algorithm using regular-
ized least square to estimate the parameters. A vector
of λ is applied to balance the frequently changing mar-
ket quotations and relatively stable connections among
stocks.

2. PROPOSED METHODS

Based on the above intuition, we propose a TRS(Temporal
Relationships between Financial Signals) algorithm for mod-
eling daily returns by necessary factors, autocorrelation and
relational parameters. We then train the model using the reg-
ularized least square method. Moreover, gradient descent al-
gorithm is used to minimize regularized square errors. The
learned relational model is then applied to build a constrained
portfolio.

2.1. Problem Formulation and Modeling

Let Pt,i denote the price of stock i on day t. In general, fi-
nancial models focus on returns rather than on prices [14],
because returns are a complete summary of both profit and
loss and they have both theoretical and empirical properties
that make them more attractive than prices [15].

The net return xt,i of stock i on day t is defined as:

xt,i =
Pt,i
Pt−1,i

− 1 (1)

Then, the cumulative return of recent T days is simply defined
by Eq. 2.

xt,i(k) =

T−1∏
k=1

(xt−k + 1)− 1 (2)

Given the historical time series data of n equities on day t,
the net return matrix is stated: X = {xt,i} ∈ RT×n, where
1 ≤ t ≤ T, 1 ≤ i ≤ n. We then designed a machine learning
based approach, named TRS, to model the statistical proper-
ties of future returns in financial assets. This is defined as:

x̂t,i =

3∑
k=1

αi,k · dt̂,k+
p−1∑
m=1

γi,m · xt−m,i+
n∑

j=1;j 6=i

ωi,j · ut,j (3)

where dt̂ = {1, xt̂, εt}, xt̂ and εt are the market index factor
and the markets’ large event adjustment parameter.

ut,j = xt,j −
3∑
k=1

αj,k · dt̂,k −
p−1∑
m=1

γj,m · xt−m,j (4)

In this model, we learn the parameters of stock i on a se-
quence of historical data; these include the equities compre-
hensive return parameter αi,k, autocorrelation factor γi,m and
relationships with others ωi,j .

2.2. Customized Estimation by Least Squares

Least squares [16, 17] is a standard approach for regression
and classification problems, and is used to find the minimized
sum of the squares of errors. In the proposed TRS model,
using historical training data (return matrix X ∈ RT×n), we
improve the standard least square cost function by adding the
customized factor ϕ:

min
α∗,γ∗,ω∗

T,n∑
t=1,i=1

(
e−(xt,i−ϕ)2 ‖xt,i − x̂t,i‖22

)
(5)

Factor ϕ is designed to maximize the weight of large losses in
equities by highlighting the cost boundary, and is estimated by
cross-validation. We use a minus number in the exponential
function because TRS is designed to give greater weight to
negative returns.

For standard regression problems as X · ω = Y , X is the
feature matrix and Y is the label vector. Then, the learned
parameter ω is given by:

ω̂ = (XTX)−1XTY (6)

In order to tackle over-fitting, the regularized parameter λ is
introduced in least square solutions. Then we have:

ω̂ = (XTX + λI)−1XTY (7)

As regularized least squares give equal penalty coef-
ficients to all parameters, we propose another regularized
method; this can add a penalty to large changes in relational
coefficients while dynamically adjusting to market changes
speedily. Therefore, by adding a regularization term, the
optimization problem becomes:

min
α∗,γ∗,ω∗

n∑
i=1

 T∑
t=1

e−(xt,i−ϕ)2 ‖xt,i − ˆxt,i‖22 +

|Θi,T |∑
k=1

λc1,kΘ2
i,T,k

+

|Θi,T |∑
l=1

λc2,l(Θi,T,l −Θi,T−1,l)
2


(8)

Where Θi,T = {αi,∗, γi,∗, ωi,∗} and Θi,T−1 are the param-
eters learned for stock i on (T-1) day. Vector λc1 and λc2
are the customized penalty parameters. They are estimated
by cross-validation. ϕ is the large losses penalty parameter,
because the maximum ambiguity is at the boundary. We then
use a gradient descent algorithm to minimize this cost func-
tion. For each xt,i ∈ R, the parameters are updated by:
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αi,k ← αi,k + η
(
Ft,i · dt̂,k − λ

k
c1 · αTi,k − λ

k
c2 · (αi,k − α

(T−1)
i,k )

)
,

k = 1, 2, 3

γi,m ← γi,m + η
(
Ft,i · xt−m,i − λ3+m

c1 · γTi,m

− λ3+m
c2 · (γi,m − γ

(T−1)
i,m )

)
,m = 1, 2, ..., p

ωi,j ← ωi,j + η
(
Ft,i · ut,j + Ft,j · ut,i − 2 · λ3+p+j

c1 · ωi,j

− 2 · λ3+p+j
c2 · (ωi,j − ω

(T−1)
i,j )

)
,

j = 1, 2, ..., n; j 6= i

(9)

In this procedure, Ft,i = e−(xt,i−ϕ)2 · (xt,i − x̂t,i). Be-
sides, η is the learning rate that is dynamically adjusted by
line search.

Table 1. Relational Matrix C of TRS.
1 · · · i · · · j · · · n

1 σ2
1 · · · ω1,i · · · ω1,j · · · ω1,n

· · · · · · · · · · · · · · · · · · · · · · · ·
i ωi,1 · · · σ2

i · · · ωi,j · · · ωi,n

· · · · · · · · · · · · · · · · · · · · · · · ·
j ωj,1 · · · ωj,i · · · σ2

j · · · ωj,n

· · · · · · · · · · · · · · · · · · · · · · · ·
n ωn,1 · · · ωn,i · · · ωn,j · · · σ2

n

Once we obtain the trained parameters ωi,j , a relationship
matrix can be built as shown in Table. 1. We then utilize this
matrix C to build the optimal portfolio. For a given expected
return xe, investors want to find the minimum variance of the
portfolio. Therefore, the weights w of the equities in a port-
folio are formulated by optimizing problems as Eq. 10.

min
w

1

2
wTCCTw

subject to:
n∑
i=1

xiwi ≥ xe

n∑
i=1

wi = 1;wi ∈ [0, 1], i ∈ {1, 2, · · · , n}

(10)

Where, xi is the expected return of stock i, and C is the re-
lationship matrix built by the parameters learned above. As
CCT is positive semi-definite, the target function is convex;
consequently, quadratic programming could be applied to find
a global optimal solution in this problem.

2.3. Convergence and Complexity Analysis

We use at least T days of historical data to train our model in
order to update the autocorrelation coefficient effectively. We

initialize the parameters randomly for the first training pro-
cess; we then use the previous day’s parameters as the original
state of current day. Since the time windows series data slide
is only one day per time, convergence can always be achieved
within a few iterations.

For the storage complexity, during the iterations, we need
to hold R, xT̂ and εT in the memory, which costs O(Tn)
space. ΘT and {ut,i} are also needed when updated, bringing
an additionalO(Tn+n2) space. Here T is the number of days
and n is the number of equities. Therefore, the total storage
complexity is O(2Tn+ n2).

For the computational complexity, in every iteration, we
need O(Tn) time to compute {ut,i}, O(Tn2) time to update
ΘT . Thus, the computational complexity of one iteration is
O(Tn2), while the total for the TRS algorithm over m itera-
tions is O(Tmn2).

3. EXPERIMENTS

3.1. Datasets

We run our experiments on all companies currently listed in
CSI 300 and S&P 500 that have traded between January
1, 2005 and January 1, 2015. These companies are derived
from ten sectors: Industrials, Health Care (H.C.), Information
Technology (I.T.), Financial, Utilities, Materials, Consumer
Staples, Consumer Discretionary, Energy and Telecommuni-
cation Services.

Based on financial domain knowledge and statistical in-
formation from our datasets [18], we define that there is an
event if one stock’s return in a day is less than minus 9 per-
cent, so ϕ is set to 0.09. If more than two equities experienced
events in a day, we call this is an event day. In total, there are
238 event days among CSI 300 companies and 179 event
days for S&P 500 companies. It should be noted that the av-
erage returns on event days differ significantly: C4.322% for
CSI 300 and C1.150% for S&P 500.

3.2. Top K Negative Return Experiments

In this test, our proposed method is applied to S&P 500 and
CSI 300 datasets. Using at least 50 days of historical data,
we train and update the parameters daily. On the next day,
given a set of equities returns A, we predict the rest set of
equities returns B (which is disjoint with A), comparing the
predicted results with the true values. This test is designed to
evaluate the accuracy of relationship matrix C, which is con-
structed by ωa,b, {a ∈ A, b ∈ B}. As mentioned in Section
2, this papers main topics are modeling and learning relation-
ship parameters. Therefore, after training the proposed model
with historical data on all equities, we could obtain ωa,b,t−1

and matrix Ct−1 in day t-1. Then, given returns of A on the
next day, the returns of equities in the rest set B could be pre-
dicted by the model in Eq. 3. For example, pick b in day t
from test set B, its return is calculated by Eq. 11.

x̂t,b =

3∑
k=1

αb,k · dt̂,k+

p−1∑
m=1

γb,m · xt−m,b+

|A|∑
a=1

ωb,a,t−1 · ut,a (11)
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Then, we compare x̂t,b with real values to measure the
models precision; more specifically, the precision of the rela-
tionship parameters ωa,b.

The model is trained on event days in each sector.
We compare our method with AR, ARMA, ARIMA,
GARCH , CR, PCR and FAC [19]. In TRS and FAC,
we use market factor dt̂ and returns of set A on the current
day, ωa,b,t−1 on the previous day and lagged return xt−m
to predict xt,b, the return of b on day t. For CR and PCR,
the relationship on the previous day and returns of set A on
the current day t are applied. Accordingly, lagged return
xt−m is used in AR(1), ARMA(1, 1), ARIMA(1, 1, 1) and
GARCH(1, 1) models. We use ω from the previous day and
use the current day market factors and returns of the portfolio
set to evaluate models.

The main purpose of this paper is to learn relationships
among financial signals; therefore, the key is to apply ωa,b,t−1

from the previous day rather than the current day. For market
sensitivity factors and returns of set A, as known and given
values, these are updated by the current day values.

We evaluate our methods on the event days, then exclude
sectors that have fewer than 10 such days. We randomly split
data to 80 percent for training and the rest for test. We run the
model 100 times, recording the mean and variance of MAP
scores [20]. The results are shown in Fig. 1. TRS outper-
forms seven other methods in all sectors of both markets.
This advantage is more significant in Chinese stock market
CSI 300 companies, as presented in Fig. 1(a).
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Fig. 1. MAP scores of 100 test runs in seven sectors of
CSI 300 and S&P 500.

3.3. Build Portfolio with Relationship Matrix

Curbing large losses in stock portfolios is the major applica-
tion of this method, which is known as a tradeoff between
desired return and risk. For a portfolio construction problem,
given expected return xe, the minimum variance portfolio is
the optimal portfolio, which is optimized by Eq. (10).

In conventional methods, C is the covariance of returns

and xi is the desired return of stock i. Normally, these are
calculated from historical data. In order to build a portfolio as
formulated in Eq. 10, correlations among stocks are needed.
Thus, we compare the performance with the covariance ma-
trix, referred to as COV , and FAC.

The expected return is negative correlated with portfolio
diversity in a limited period. Thus, we utilize the desired
expected return xe to control the amount of diversification.
Given historical data, maximum expected returns and mini-
mum risk causal relative are major targets in this experiment.
We apply the model to two sectors with the most events. We
compare TRS with FAC and COV , and the cumulative re-
turns in the financial sector of S&P 500 are shown in Fig. 2.
Between 2005 and 2008, our model is comparable with two
other approaches, FAC and COV . However, when the mar-
ket situation is tough in 2008, TRS and FAC models out-
perform COV soon afterwards. Since mid-2009, the cumu-
lative return of TRS is consistently larger than FAC. This
demonstrates the effectiveness of our model in building opti-
mal portfolios.
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Fig. 2. Cumulative returns of portfolios in the financial sector,
as built by our methods, COV and FAC.

4. CONCLUSION

In this paper, we have proposed a temporal relationship learn-
ing approach on financial signals by denoising market sen-
sitivity and autocorrelation. The learned relationship param-
eters among financial signals could effectively control large
losses of a built portfolio. Specifically, we model daily re-
turns by autocorrelation and factor methods. The order of au-
tocorrelation is optimized by cross-validation; we then train
the model by regularized least squares and gradient descent
methods. Two other factors are designed for quick response
to market fluctuations and its relationship with others. Then
we construct a matrix by relationship parameters that are later
utilized to build portfolios. Finally, two kinds of experiments
are applied to demonstrate the effectiveness of this model.
The results show that our method consistently outperforms
other state-of-the-art methods.
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“A new approach to measuring financial contagion,” Re-
view of Financial studies, vol. 16, no. 3, pp. 717–763,
2003.

[2] Ke Zhou, Xin Li, and Hongyuan Zha, “Collabora-
tive ranking: improving the relevance for tail queries,”
in Proceedings of the 21st ACM international con-
ference on Information and knowledge management.
ACM, 2012, pp. 1900–1904.

[3] Kristin J Forbes and Roberto Rigobon, “No contagion,
only interdependence: measuring stock market comove-
ments,” The journal of Finance, vol. 57, no. 5, pp. 2223–
2261, 2002.
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