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ABSTRACT

Automatic conflict detection has grown in relevance with the
advent of body-worn technology, but existing metrics such
as turn-taking and overlap are poor indicators of conflict in
police-public interactions. Moreover, standard techniques to
compute them fall short when applied to such diversified and
noisy contexts. We develop a pipeline catered to this task
combining adaptive noise removal, non-speech filtering and
new measures of conflict based on the repetition and intensity
of phrases in speech. We demonstrate the effectiveness of
our approach on body-worn audio data collected by the Los
Angeles Police Department.

Index Terms— Conflict detection, speech repetition,
body-worn audio.

1. INTRODUCTION

Body-worn technology is beginning to play a crucial role in
providing evidence for the actions of police officers and the
public [1], but the quantity of data generated is far too large
for manual review. In this paper we propose a novel method
for automatic conflict detection in police body-worn audio
(BWA). Methodologies from statistics, signal processing and
machine learning play a burgeoning role in criminology and
predictive policing [2], but such tools have not yet been ex-
plored for conflict detection in body-worn recordings. More-
over, we find that existing approaches are ineffective when
applied to these data off-the-shelf.

Notable papers on conflict escalation investigate speech
overlap (interruption) and conversational turn-taking as indi-
cators of conflict in political debates. In [3], overlap statistics
directly present in a hand-labelled dataset are used to predict
conflict, while [4] detect overlap through a Support Vector
Machine (SVM) with acoustic and prosodic features. The
work in [5] compares variations on both methods. Using au-
tomatic overlap detection, their method achieves 62.3% un-
weighted conflict accuracy at best in political debate audio.
This approach is all the less effective on BWA data, which is
far noisier and more diverse. Besides being harder to detect,
overlap serves as an unreliable proxy for conflicts between
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police and public: these often involve little to no interruption,
especially in scenarios where the officer is shouting or other-
wise dominating the interaction.

We propose new metrics that successfully predict conflict
in BWA along with speech processing and modeling tech-
niques tailored to the characteristics of this data. Section
2 details adaptive pre-processing stages, feature extraction,
and a SVM for non-speech discrimination. In Section 3, we
develop metrics based on repetition using audio fingerprint-
ing and auto-correlation techniques. This is based on the
observation that conflict largely occurs in situations of non-
compliance, where the officer repeats instructions loudly and
clearly. Finally, performance is evaluated on a dataset of 105
BWA files provided by the Los Angeles Police Department
(LAPD) in Section 5. The illustration below summarizes our
conflict detection procedure.

Denoising Feature Extraction Non-Speech Filter

Repetition Detection Conflict Score

2. PRE-PROCESSING AND FILTERING

The success of our approach relies on pre-processing steps
catered to the task at hand. We apply adaptive denoising pro-
cedures followed by feature extraction for supervised discrim-
ination of non-speech, also called Voice Activity Detection.

2.1. Denoising

Persistent noise like traffic, wind and babble as well as short-
term bursts of noise including sirens, closing doors and po-
lice radio are present along with speech in BWA audio. We
filter persistent but non-stationary background noise based on
optimally-modified log-spectral amplitude (OM-LSA) speech
estimation, and apply minima controlled recursive averaging
(MCRA) as described in [6]. Briefly, this approach computes
the spectral gain while accounting for speech presence un-
certainty, ensuring that noise removal best preserves speech
components even when the signal-to-noise ratio (SNR) is low.
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Let x(n) and d(n) denote speech and (uncorrelated, ad-
ditive) noise signals respectively. Then the observed signal is
y(n) = x(n) + d(n), where n is a discrete-time index. The
spectrum is obtained by windowing y(n) and applying the
short-term Fourier transform (STFT), denoted Y (k, l) with
frequency bin k and time frame l. The STFT of clean speech
X(k, l) can be estimated as X̂(k, l) = G(k, l)Y (k, l), where
G(k, l) is the spectral gain function. Via the LSA estimator,
we apply the spectral gain function which minimizes

E
[
(log|X(k, l)| − log|X̂(k, l)|)2

]
.

Let hypotheses H0(k, l) and H1(k, l) respectively indicate
speech absence and presence in the kth frequency bin of the
lth frame. Assuming independent spectral components and
STFT coefficients to be complex Gaussian variates, the spec-
tral gain for the optimally modified LSA is given by

G(k, l) = GH1
(k, l)

p(k,l)
G

1−p(k,l)
min .

Here GH1
(k, l) represents the spectral gain which should be

applied in the case of speech presence and Gmin is the lower
threshold for the gain in case of speech absence, preserving
noise naturalness. p(k, l) is the a posteriori speech proba-
bility P (H1(k, l)|Y (k, l)), computed using the estimates of
noise and speech variance λd(k, l) and λx(k, l), the a priori
SNR ξ(k, l) = λx(k,l)

λd(k,l) and the a priori speech absence proba-
bility q(k, l) = P (H0(k, l)).

To estimate the time-varying spectrum of non-stationary
noise λd(k, l), we employ temporal recursive smoothing dur-
ing periods of speech absence using a time-varying smoothing
parameter. The smoothing parameter depends on the estimate
of the speech presence probability, obtained from its previ-
ous values and the ratio between the local energy of the noisy
signal and its derived minimum. Given λ̂d(k, l) we may im-
mediately estimate the a posteriori SNR,

γ(k, l) =
|Y (k, l)|2

λd(k, l)
.

This is used to estimate the a priori SNR given by

ξ̂(k, l) = αGH1(k, l − 1)
2
γ(k, l − 1)

+ (1− α) max {γ(k, l)− 1, 0} ,

with weight α controlling the noise reduction and signal dis-
tortion. The estimate ξ̂(k, l) allows for computing the prob-
ability of a priori speech absence as described in [6], which
finally enables computation of the spectral gain and in turn
speech spectrum.

We perform this filtering method three times in sequence
to reliably remove residual noise that may persist after one
stage of filtering. Doing so produces excellent results, elimi-
nating most persistent noise while crucially avoiding attenua-
tion of weak speech components. Nevertheless, sudden bursts
of noise are rarely eliminated because the filter cannot adapt
in time. We apply the method below to remove them, which
is equally crucial to reliable repetition detection.

2.2. Feature Extraction and Non-Speech Filter

The task of this section is to filter remaining non-speech. To
begin, the audio signal is split into overlapping frames of size
0.06s and with 0.02s steps between start times. Over each
frame, we compute 23 short-term features consisting of the
first 13 Mel-Frequency Cepstral Coefficients (see [7]); zero-
crossing rate; energy and energy entropy; spectral centroid,
spread, entropy, flux and rolloff; fundamental frequency and
harmonic ratio. Features which require taking the Discrete
Fourier Transform are first re-weighted by the Hamming win-
dow. Since many meaningful speech characteristics occur
in a longer time-scale, we additionally include the mid-term
features obtained by averaging our short-term features across
frames of size 0.3s and step 0.1s.

We apply a SVM with Radial Basis Function kernel [8,
Chap. 12] to discriminate between speech and non-speech in
this feature space. The SVM is trained on 38 minutes (22733
frames) of labeled speech and 47 minutes (28239 frames) of
non-speech from BWA data. To evaluate predictive power
we perform cross-validation (CV) with 10 folds [8, Chap. 7].
Our results are displayed in Table 1 and compare favourably
with state-of-the-art papers in speech detection, which obtain
error rates no lower than 5% in [9] and 12% in [10], on clean
and noisy data (SNR at least 15 dB) respectively. Their learn-
ing algorithms include SVMs, Gaussian Mixture Models and
Neural Networks.

False Positive False Negative Total Error

1.26% 3.61% 2.31%

Table 1: 10-fold CV error in speech/non-speech detection.

3. REPETITION DETECTION AND SCORING

Having eliminated most of the non-speech and noise, we turn
to detecting repetitions as a measure of conflict. We split the
audio into regions of interest and compare them using finger-
print and correlation methods based on [11] and [12].

3.1. Segmentation and Repetition

In order to reduce the time it takes to search for repetitions,
we automatically break the signal into regions which contain
entire syllables, words, or phrases. We begin by applying a
band-pass filter between 300 and 3000Hz, which we found to
carry the most information about speech in our recordings.

Let E′(t) be the energy (squared amplitude) of the sig-
nal in a window of length 0.05s starting at time t, and define
E(t) = 1{E′(t)>0.05}E

′(t). This threshold filters windows
with energy below 0.05, in which the signal-to-noise ratio is
too small for reliable repetition detection. We define points
t0 = 0 and t1, . . . , tn by the following criteria:
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1. E(ti) is a local minimum of E(t).

2. There exists t ∈ [ti−1, ti] such that E(t) 6= E(ti).

3. Each ti is the earliest time satisfying (1) and (2).

This somewhat cumbersome definition deals with the possi-
bility that E attains the same local minimum value at con-
secutive times, by taking the earliest such time. We define
t′1, . . . , t

′
n analogously by taking the latest such times. This

defines regions [t′i−1, ti] delimited by local minima which are
not trivially flat inside. We then let Ti be the earliest time
in [t′i−1, ti] such that E(Ti) is a local maximum. Finally, let
s0 = 0 and define new endpoints sj recursively by

sj = min {ti | ti ≥ sj−1 and E(Ti)− E(ti) > σ} ,

where σ is the standard deviation of E. We define s′j analo-
gously with t, s replaced by t′, s′ everywhere. This isolates
regions Rj =

[
s′j−1, sj

]
which start at the bottom of an en-

ergy spike and finish at the other end, ignoring spikes that are
too small to be meaningful. The definitions are illustrated in
Figure 1 below, where one of our BWA spectrograms is over-
laid with a depiction of its energy curve.

Fig. 1: Spectrogram overlayed with energy across time.

In this example, the local minimum t1 = t′1 is not equal to any
sj because the energy distance E(T1)−E(t1) to the previous
maximum is less than σ. The resulting regions usually contain
syllables or short words. In order to form regions of longer
words and short phrases, we concatenate these initial regions
together. First we choose a cutoff distance C = 0.02s and let
k = 0. For each region Rj = [r1

j , r
2
j ], proceed as follows. If∣∣r2

j+k − r1
j+k+1

∣∣ < C

then add a new region [r1
j , r

2
j+k+1], increment k, and repeat

until the condition is false. Finally, segments shorter than
0.05s are discarded since any syllable takes longer to pro-
nounce. These contain too little information to be reliably
distinguished, and do not provide meaningful repetitions.

Fingerprinting: Following [11], our first measure associates
a binary rectangular array called fingerprint to each region,
and computes the percentage of entries at which two arrays
differ. Regions are binned into N non-overlapping windows
of length 0.1s in the time domain, which are then partitioned
into M = 32 bands of equal length between 300 and 3000Hz
in the frequency domain. We define En,m to be the energy
of window n within frequency band m for 1 ≤ n ≤ N , 1 ≤
m ≤M . We then take second-order finite differences

∆2(n,m) = [En,m − En,m+1]− [En−1,m − En−1,m+1] ,

which provide a discretized measure of curvature in the
spectral energy distribution over time. The value of the fin-
gerprint at position (n,m) is now defined as F (n,m) =
1{∆2(n,m)>0} . Given a fingerprint pair, the percentage of
positions at which arrays differ provides a measure E of
dissimilarity between regions.

Correlation: The second metric, based on [12], makes use
of the correlation between Fourier coefficients over short win-
dows. Regions R1 and R2 are first split into N overlapping
windows wi1, . . . , w

i
N for i = 1, 2. For each window win, let

ŵin(m) be the Fourier coefficients corresponding to frequen-
cies between 300 and 3000Hz. For each m, we compute the
correlation C(m) =

σ1,2(m)
σ1(m)σ2(m) between the values of the

mth coefficient of the two regions, where

σi(m) =

√√√√ N∑
n=1

(ŵin(m)− ŵi(m))2 ,

σ1,2(m) =

N∑
n=1

(ŵ1
n(m)− ŵ1(m))(ŵ2

n(m)− ŵ2(m)) ,

and ŵi(m) = 1
N

∑N
n=1 ŵ

i
n(m). Finally, averaging C(m)

over m = 1, . . . ,M yields an overall similarity measure C
for R1 and R2. This measure is less sensitive and produces
more false positives than fingerprints. On the other hand, cor-
relation can pick up on noisy repetitions where fingerprints
fail. Our approach is to combine these methods so as to bal-
ance their strengths and weaknesses.

3.2. Scoring

Combining the fingerprint and correlation metrics into a sin-
gle score, define S(E,C) =

√
f1(E)f2(C) where

f1(E) = 1{E<0.3} + 1{0.3≤E≤0.45}

[
20

3
(0.3− E) + 1

]
,

f2(C) = 1{C>0.55} + 1{0.25≤C≤0.55}

[
10

3
(C − 0.25)

]
.

The functions f1 and f2 are designed to convert the outputs of
each method to more meaningful levels of confidence that can
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be compared and combined, taking into account our empirical
observations about the behavior of each method. For exam-
ple, both our experiments and the paper [11] suggest that a
fingerprint difference above 45% corresponds to regions that
are almost certainly not repetitions. Similarly, we are almost
certain that a fingerprint difference below 30% corresponds
to repeated regions. After evaluating segments, the measures
are aggregated to score the entire audio file. This total score
is computed as the average of non-zero scores among the top
5% of unique comparisons. As such, this score is higher for
files that contain more or clearer repetitions, and lower for
those with fewer or less distinguishable repetitions.

Though repetition tends to be more frequent in scenarios
of conflict, significant disputes can further be distinguished
from mild ones via a measure of intensity. High conflict sce-
narios often involve shouting or loud commands, producing
higher energy. Accordingly, an intensity score is computed
by averaging the energy among the same top 5% set of rep-
etitions. The overall conflict score for an audio signal is the
product of its repetition and intensity scores.

4. RESULTS AND DISCUSSION

We test our approach on a collection of 105 body-worn audio
files provided by the LAPD, of lengths between 3 and 30 min-
utes each. The files are manually labeled according to level
of conflict, where the classes and criteria are as follows:

2. High conflict (3 files): active resistance, escape, draw-
ing of weapon, combative arguments.

1. Mild conflict (15 files): questioning of officer judg-
ment, avoiding questions, avoiding to comply with
commands, aggressive tone.

0. Low conflict (87 files): none of the above.

Figure 2 is a plot of files ranked in descending order of con-
flict score as determined by our method, illustrating that those
labeled as high or mild conflict are concentrated toward the
top. More specifically, all three files labeled as high conflict
occur in the top 10 scores.

In general, the three classes are correctly prioritized by the
scoring algorithm. Only 4 of the 18 files in classes 1 and 2 fell
below rank 24. In other words, 78% of the files with any con-
flict would be found by reviewing only the top 23% of files in
the list. The mean scores for each class, displayed in the fig-
ure, are clearly well-separated. Our method can thus be used
to significantly reduce the time it takes to manually locate files
containing conflict. Further, the algorithm automatically iso-
lates the repetitions detected in a given file, which amount to
very short audio portions relative to the entire signal. As such,
we may quickly search through the high-rank audio files by
listening to these portions.

Given a larger dataset, one could automatically determine
the adequate scores to label a file as containing high/mild/low
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Fig. 2: Plot of conflict score against rank. Horizontal lines
depict the mean score for the class of corresponding color.

conflict using a learning algorithm of choice. One may also
input the fingerprinting, auto-correlation and intensity mea-
sures as features into the learning algorithm, producing a de-
cision hyperplane in three dimensions.

In addition to their immediate use, our findings may also
inform policy to better aid future work. We find that officer
speech is vastly more informative than other voices, which
are less comprehensible and contribute to false positives. To
further improve performance, one may exclude all speech
except that of the officer. This falls under the task of speaker
diarization—see [13] for a recent review—and most stud-
ies in this area are based on relatively clean data (broadcast
meetings, conference calls). State-of-the-art methods includ-
ing [14] and [15] achieve no less than 18% diarization error
rate on average, rising to 30% for some of the meetings, but
perform much worse when applied to our BWA data. This
obstacle may be overcome provided additional labeled data.
Given a sample of the officer’s voice that can be used to iden-
tify them elsewhere, our supervised learning task translates
to speaker verification [16]. Such data could be provided by
requiring officers to record a few minutes of clean speech
once in their career; this sample could then be overlaid with
non-speech extracted by our pipeline to render it comparable
with BWA files featuring a range of noise environments.

5. CONCLUSION

To summarize, we offer a novel method for automatic con-
flict detection which is successful for applications in police
body-worn audio. We are able to automatically select audio
files which are very likely to contain conflict, despite a small
number of high conflict files. We propose eliminating non-
officer speech through speaker verification and using all three
sub-scores as learning features to improve these results.
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