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ABSTRACT

Spectrum sensing in heterogeneous networks is very challenging as
it usually requires a large number of static secondary users (SUs)
to capture the global spectrum states. In this paper, we tackle the
spectrum sensing in heterogeneous networks from a new perspec-
tive. We exploit the mobility of multiple SUs to simultaneously col-
lect spatial-temporal spectrum sensing data. Then, we propose a new
non-parametric Bayesian learning model, referred to as beta process
hidden Markov model to capture the spatio-temporal correlation in
the collected spectrum data. Finally, Bayesian inference is carried
out to establish the global spectrum picture. Simulation results show
that the proposed algorithm can achieve a significant spectrum sens-
ing performance improvement in terms of receiver operating charac-
teristic curve and detection accuracy compared with other existing
spectrum sensing algorithm.

1. INTRODUCTION

Cognitive radio (CR) is a promising paradigm to increase the spec-
trum usage efficiency and alleviate the spectrum scarcity problem
for wireless networks [4]. In a CR network (CRN), spectrum sens-
ing is widely recognised as the most critical function, which enables
secondary users (SUs) to identify the spectrum holes [4] and access
the idle spectrum opportunistically with no or minimal interference
to primary users (PUs).

With the emerging new wireless networks and applications, a
CRN could cover a large area, sometimes involving multiple PUs.
Due to many factors such as path loss, shadowing, and fading, at any
given time moment, the spectrum status observed by different SUs at
different locations within the CRN may vary significantly, depending
on SUs being within or out of the transmission ranges of PUs. A
typical heterogeneous CRN is shown in Fig. 1. This renders the
heterogeneous property, which entails great difficulty in sensing and
predicting the spectrum availability at any given location. To acquire
heterogeneous spectrum states, cooperative spectrum sensing (CSS)
methods were proposed to exchange sensing information among SUs
such as [5–7,13,14]. In essence, CSS exploits the spatial diversity to
enhance sensing performance, taking advantages of spatially located
SUs. In general, these methods assume SUs to be static, and require
a large number of SUs, which is either infeasible or very costly in
implementations.

However, it is worth noted that mobility is one of the most
important characteristics inherent to the SU in a wireless network.
Some initial studies in [9] verified that SU’s mobility can signifi-
cantly increase spatial-temporal diversity of the received signal by
the SU in various wireless environments. In this paper, we propose
a novel mobile CSS scheme for large-scale CRNs, drawing upon the

Fig. 1. A typical heterogeneous CRN. Black dash-line circle is the
transmission range of each PU. At different sensing instants (TA, TB

and TC ), a mobile SU experiences different spectrum states. Chan-
nels filled with colours indicate being occupied by corresponding
PU.

recent development in Bayesian machine learning. Our idea is to
utilise a small number of mobile SUs to collect spatio-temporal spec-
trum data, and derive the global spectrum states from these data. In
specific, we propose a new non-parametric Bayesian learning mod-
el, referred to as beta process hidden Markov model (BP-HMM),
to capture the spatio-temporal correlation in the collected spectrum
data. Then Bayesian inference is carried out to automatically group
sensing data into different classes in an unsupervised manner, where
spectrum data in each class shares a common spectrum state. With
the classification results, we can predict the accurate spectrum state
for a new SU by assigning it to one of the existing classes.

Our proposed scheme features spectrum learning intelligence
and high detection accuracy. Unlike the existing CSS schemes such
as [12] which needs the priori information on the number of possi-
ble spectrum states, in the proposed scheme, such information can be
automatically learnt from the sensing data. Meanwhile, the proposed
scheme achieves better decision performance compared with tradi-
tional approaches such as energy detection [15] and Gaussian mix-
ture model (GMM)-based machine learning algorithm [12]. Simula-
tion results verify the supremacy of the proposed scheme in terms of
receiver operating characteristics (ROC) curve and detection accura-
cy.

2. SYSTEM MODEL AND ASSUMPTION

We consider a large-scale CR network consisting of N PUs and M
mobile SUs. The spectrum range of interest consists of L sub-bands,
in one of which each PU operates and remains for a certain period
if active. All the M SUs move within the network with low speed
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so that Doppler effect could be ignored. In the same time, they will
collect spectrum data with certain time interval and store it local-
ly. The entire network is organised into a cluster topology with a
cluster head (CH) within each cluster. Every time when SUs finish
their sensing task, depending on the location, SUs will transmit their
spectrum sensing results to the nearby CH for processing, assum-
ing error-free transmission. In the mean time, sensing information
exchange among all CHs also take place.

At sensing time index i, the received sample for the l-th (1 ≤
l ≤ L) sub-band of the m-th (1 ≤ m ≤ M) SU can be expresses
as:

xml [i] =

{
nm
l [i] H(l)

0 .√
γm
l s

m
l [i] + nm

l [i] H(l)
1 .

(1)

where H(l)
0 denotes the hypothesis that in the l-th sub-band no PU

is detected, while H(l)
1 indicates a PU is transmitting at sub-band l;√

γm
l s

m
l [i] is the received primary signal with average power γ(m)

l ;
n
(m)
l [i] is the additive white Gaussian noise denoted asN (0, σ2

n) for
all cases; following [8], sml [i] is assumed to follow complex Gaus-
sian distribution with zero mean and unit variance, i.e., sml [i] ∼
CN (0, 1); Combined absent case with normal situation, then a u-
nified distribution of xml [i] can be expressed by a compact complex
Gaussian distribution with zero mean and covariance written as

xml [i] ∼ CN (0, γm
l + σ2

n). (2)

We decompose xml [i] into its real and imaginary parts written as

xml [i] = xml,re[i] + jxml,im[i]. (3)

Both parts are independent and identically distributed (i.i.d) Gaus-
sian variables with zero mean and equal variance (xml,re[i], x

m
l,im[i] ∼

N (0, (γm
l + σ2

n/2)). Note that since SUs are sensing L sub-bands
simultaneously, the final sensing sample xm[i] is L dimension
observation written as

xm[i] =

(
xm

1,re[i], ...,x
m
L,im[i]

xm
1,re[i], ...,x

m
L,im[i]

)
. (4)

3. MODELLING OF COLLECTED SPECTRUM SENSING
DATA

Given spectrum sensing data xm[i], our goal is to find i) which spec-
trum states each data point belongs to and ii) how many different
spectrum states exist in the CRN. To achieve the above goals, we first
propose non-parametric Bayesian learning algorithm to capture the
spatial-temporal correlation in spectrum sensing data. The graphical
model is shown in Fig. 2, where HMM discovers the latent statisti-
cal correlation within single SU’s sequential data xm[i], while beta
process finds common and unique spectrum states among multiple
SUs.

In Fig. 2, the discrete hidden states zmi = 1, 2, ..., k, (1 ≤ k ≤
K) is the index of spectrum states to indicate observations at sensing
index i should belong to which spectrum states. For observation
xm[i] and hidden states zmi , the HMM assumes

zmi+1|zmi ∼ πm
zi ,

xm[i]|zmi ∼ F (θzmi ),
(5)

where πm
zi is the state transition distribution which captures the latent

correlation between two consecutive sensing samples; F (·) is the in-
dexed distribution and here we use multivariate Gaussian distribution

Fig. 2. Graphic model representation for the proposed BP-HMM.

N (0,Σzi) in order to match the characteristics of our sensing sam-
ple in (2). Each state zi = k would have its own unique covariance
Σk. The covariance is further modelled by inverse Wishart (IW) dis-
tribution given by Σ|Φ, ν ∼ W−1(Φ, ν) with degrees of freedom ν
and scale matrix Φ. Note that IW distribution is the conjugate prior
for the covariance matrix of a multivariate Gaussian distribution [1].

Since the traditional HMM tends to produce redundant states
and quickly switch among them, however, In practice, the spectrum
states that mobile SUs experience normally do not change rapid-
ly. Therefore, we adopt sticky Hidden Markov Models (SHMM) [3]
which enhances the self-transition probability by introducing an ex-
tra hyper-parameter κ. In other words, κ increases the probability
of the spectrum state being the same for two consecutive samples.
With the introduction of κ, the transition distribution out of state k
is defined by a modified Dirichlet distribution. Given by

πm
k ∼ Dir([γ, ..., γ, γ + κ, γ, γ]), (6)

where γ is the global transition hyperparameter and κ is placed on
self-transition probability to implement sticky function.

On the other hand, the ’cooperation’ between multiple SUs’ time
series data are related by the overlap in the set of spectrum states
each exhibits. Therefore, we define a globally shared set of possible
spectrum states. Our goal is to discover which states are shared a-
mongst the time series and which are unique. Therefore, we define
a binary state indicator fm

k , where fm
k = 1, (1 ≤ k ≤ K) implies

that time series sensing data at the m-th SU exhibits k-th spectrum
state. Consequently, transition probability is naturally restrained by
its corresponding state indicator. For example, from current state s
to new state s′, its transition probability πm

ss′ can be written as{
πm
ss′ = 0 if fm

s′ = 0,

πm
ss′ > 0 if fm

s′ = 1.
(7)

By utilising element-wise vector product function � with the
vector of binary indicator variables fm = [fm

1 , ..., f
m
K ], the transi-

tion distribution (6) is modified as

πm
k ∼ Dir([γ, ..., γ, γ + κ, γ, γ])� fm, (8)

In Fig. 2, the function of beta process is to generate prior dis-
tribution on the vector of state binary indicator fm. Beta process
can automatically determine the number of possible features in the
object with an unbounded set of possible features [11]. Motivated
by this ability, we refer to our time series data and spectrum states as
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objects and features respectively. Specifically, beta process results in
a random measure B denoted as B ∼ BP (β,B0). B is constructed
by a collection of points {pk, ωk} as B =

∑∞
k=1 pkδωk . Each atom

ωk can be considered as one possible spectrum state with its associ-
ated probability pk to be present. pk is defined by beta distribution
given as

pk ∼ Beta(βqk, β(1− qk)), (9)

where qk = mk/(β + M − 1), qk ∈ (0, 1) denotes the mass of
the k-th atom in B0, and mk is the number of time series possessing
state k.

Then we determine the value of binary state indicator fm
k inde-

pendently by Bernoulli process sampling its associated probability
as fm

k ∼ Bernoulli(pk). We summarise our BP-HMM in Fig . 2
as follows

Bm|B0, β ∼ BP (β,B0), (10)

fm|Bm ∼ BeP (Bm), (11)

πm ∼ Dir([γ, ..., γ, γ + κ, γ, γ])� fm, (12)

zmi |zmi−1,π
m ∼Mult(πm

zi−1
), (13)

xm[i]|zmi ,Σ ∼ N (0,Σzmi
). (14)

4. BAYESIAN INFERENCE

Given BP-HMM model and time series data xm measured by SUs,
next step is to infer latent spectrum state indicator zmi for every sens-
ing sample index i. Note that the direct inference of the graphic
model in Fig. 2 is intractable. We adopt Markov chain Monte Carlo
(MCMC) sampling as our inference model. Since the graphic model
is formulated hierarchically based on the conjugacy of distributions.
Therefore, we update parameters one at a time with the other pa-
rameters assumed as known by the following updating rule in each
iteration.

4.1. Updating Rule of Shared Features fm

Due to the conjugacy property in beta-Bernoulli process[11], the
posterior distribution of binary state indicator fm

k in m-th SU’s time
series data is given by

p(fm
k = 1|F−(mk),x

m,Σ,πm)

∝ p(fm
k = 1|F−(mk))p(x

m|fm,Σ),
(15)

where the set of all feature vectors fm is defined as a compact fea-
ture matrices F , and F−(mk) are the entries of F excluding fm

k .
According to the exchangeability of beta process [11], the first term
in (15) is calculated as

P (fm
k = 1|F−(mk)) = n−m

k /M, (16)

where n−m
k is the number of time series other than m possessing

state k. This information is required to be exchanged among CHs.
The second term can be derived by applying forward algorithm in
HMMs [10]. The forward message satisfies the recursion

α̃m
i+1(z

m
i+1) = p(xm[i+ 1]|zmi+1)

∑
zi

πm
zi α̃

m
i (zmi ), (17)

where α̃m
i (zmi ) is the forward message defined as α̃i(z

m
i ) =

p(xm[1], ...,xm[T ], zmi ). The initialisation is as follows,

αm
1 (z1) = N (xm[1];0,Σz1)π

m
0 (zm1 ). (18)

Then we run the recursion from i = 1, ..., T to obtain forward
message α2, ..., αT , the desired likelihood is simply computed by
summing over the components of the forward message at the last
time index T as

P (xm[1], ...,xm[T ]|fm,Σ) =
∑
zT

αT (zT ). (19)

4.2. Updating Rule of Transition distribution πm

Due to the conjugacy of Dirichlet prior πm and multinomial likeli-
hood p(xm|πm), the posterior of transition distribution will result in
a Dirichlet distribution. Hence, the update equation for the transition
probabilities πm

k out of current state k can be derived as

πm
k |zm ∼ Dir([..., γ + nm

kk′ + κδ(k, k′), ...]� fm), (20)

where nm
kk′ counts the transitions from state k to new state k′ in the

m-th SU’s data, δ(k, k′) is an indicator whose value will be one only
when k = k′, γ is the global transition hyperparameter, and κ is the
self-transition bias weight.

4.3. Updating Rule of Gaussian Parameters Σc

Since the emission distribution lies in the exponential family, given
IW prior on unknown covariance Σk ∼ W−1(Φk, νk), its degree of
freedom νk(new) and scale matrix Φk(new) can be updated by sim-
ply aggregating data from any time step in any time series assigned
to state k written as

νnew
k = nold

k + νs, (21)

and

Φnew
k = Φold

k +

n∑
i=1

xm[i]xm[i]T , (22)

with corresponding hidden state indicator zmi = k. nc is the total
number of samples assigned to state k.

4.4. Updating Rule of Latent State Indicator z(j)

Given transition probabilities πm and the information of binary s-
tates indicator fm, following [2], we can block-sample z[1 : T ]m

in one coherent move by backward messages βm
i (zmi ) = p(x[i +

1]m, ...,x[T ]m|zmi ). It satisfies the backward recursion as

βm
t (zmi ) =

∑
zi+1

β(zmi+1)N (xm[i+ 1];0,Σzmi+1
)p(zmi+1|zmi ),

(23)
Finally, each zmi can be sampled recursively by

zmi |zmi−1,x[1 : T ]m,πm,Σ ∼ βi+1,iπ
m
zi−1

N(xm[i];Σzmi
).
(24)

In summary, this MCMC inference model iteratively samples
these parameters conditionally on the others based on the updating
rules given in Subsection 4.1 to 4.4 in one iteration. After reaching
the pre-set upper bound of iteration time, we can obtain the final
state assignment result zmi in every time series at any time step. In
the same time, the common spectrum state zmi = k for group k is
represented by its corresponding multivariate Gaussian distribution
N (0,Σk). With this information, given a new SU and its sensing
sample, we can calculate the probability of belonging to each group
and assign it to the group with maximum probability. Due to page
limitation, this part will be presented in our future work.
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5. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed spec-
trum sensing algorithm and compare it with two popular spectrum
sensing algorithms (energy detection [15] and GMM-based algorith-
m [12]) in static scheme. Note that GMM-based algorithm needs the
prior information of the number of spectrum states in the CRN.

Fig. 3. The CRN configuration for simulation (Np = 5, Ns = 9).

Fig. 4. Classification result of Fig. 3 based on our proposed algo-
rithm, a different colour representing a different class.

We consider a typical CRN as a 15 km x 15 km area as shown
in Fig. 3. The area is divided into nine (3x3) small grids, each cor-
responding to a cluster. We have N = 5 PUs deployed in one of
the nine grids. Each PU operates independently in one of L = 9
sub-bands, each of which is assumed to have similar channel param-
eters. The transmission power of each PU is set to 20mW (black
circle is the PU transmission range). Transmission signals attenuate
according to a free-space propagation model. M = 9 mobile SUs
are assumed, and their tracks are represented by different colours.
Each track consists of eighty data points where SU performs sens-
ing every 10 seconds and the overall sensing period is 800 seconds.
Note that both PUs’ position information and transmission power are
unknown to SUs. The pre-set upper bound of iteration times is 100.

The hyperparameter in BP-HMM model is set to be β = 1, κ = 10,
γ = 2 and the initial variance in Gaussian distribution Σ is unity.

Fig. 4 presents the segmentation result of the CRN setup in Fig.
3. It clearly shows that the classification result is consistent with its
actual results in terms of the spectrum states that each data point be-
longs to and the total number of spectrum states. Here, six different
colours indicate six unique spectrum states in the CRN.

Fig. 5. ROC curve performance comparison with other algorithm
under the same CRN setup in Fig. 3.

Fig. 6. Detection accuracy comparison with other algorithm under
different PU number.

Fig. 5 and 6 depict the performance of different CSS scheme
in terms of receiver operating characteristics (ROC) curve and de-
tection accuracy respectively. As we can see, our BP-HMM based
algorithm, even without prior knowledge of the number of hetero-
geneous spectrum states, significantly outperforms energy detection
and GMM-based sensing schemes. It is because both energy de-
tection and GMM-based algorithm only exploit the spatial correla-
tion in essential while our algorithm takes full advantages of spatial-
temporal characteristics in the data. In Fig. 6, with the increase of
the number of PUs, the spectrum sensing performance degrades for
all algorithms. However, our algorithm only suffers negligible detec-
tion accuracy degradation. This clearly demonstrates the robustness
of the proposed algorithm against the increasing number of PUs.

6. CONCLUSIONS

A non-parametric machine learning based mobile CSS scheme was
proposed for spectrum sensing in large-scale heterogeneous CRNs.
By exploiting the mathematical correlation between multiple spec-
trum sensing time series, the proposed method jointly groups da-
ta points with common spectrum states. Furthermore, the perfor-
mance evaluation based on ROC and detection accuracy showed that
the proposed scheme significantly outperforms energy detection and
GMM-based schemes.
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