
ONLINE DIRECTION OF ARRIVAL ESTIMATION BASED ON DEEP LEARNING

Qinglong Li, Xueliang Zhang∗ and Hao Li

Department of Computer Science, Inner Mongolia University, Hohhot, China, 010021
31509030@mail.imu.edu.cn, cszxl@imu.edu.cn, lihao.0214@163.com

ABSTRACT

Direction of arrival (DOA) estimation is an important topic in
microphone array processing. Conventional methods work
well in relatively clean conditions but suffer from noise
and reverberation distortions. Recently, deep learning-based
methods show the robustness to noise and reverberation.
However, the performance is degraded rapidly or even model
cannot work when microphone array structure changes. So it
has to retrain the model with new data, which is a huge work.
In this paper, we propose a supervised learning algorithm
for DOA estimation combining convolutional neural network
(CNN) and long short term memory (LSTM). Experimental
results show that the proposed method can improve the
accuracy significantly. In addition, due to an input feature
design, the proposed method can adapt to a new microphone
array conveniently only use a very small amount of data.

Index Terms— Direction of arrival estimation (DOA),
convolutional neural network (CNN), long short term
memory (LSTM)

1. INTRODUCTION

Robust DOA estimation is important for many applications
such as robotics and beamforming [1]. However, accurate
DOA estimation is very challenging when received speech
signals are distorted by background noise and reverberation.

Many signal processing approaches are developed for
DOA estimation in literature. These approaches can be
generally divided into following categories: i) subspace
based approaches such as the multiple signal classification
(MUSIC) [2], ii) time difference of arrival (TDOA)
based approaches that use the family of generalized cross
correlation (GCC) methods [3, 4], iii) signal synchronization
based approaches such as the steered response power
with phase transform (SRP-PHAT) [5], and multichannel
cross correlation coefficient (MCCC) [6], iv) model-based
approaches such as maximum likelihood method [7]. In
practice, these traditional methods generally suffer from
either one or a combination of following problems: high
computational cost, degradation in performance in presence
of low signal to noise ratio (SNR) and/or heavy reverberation
environment.

Recently, deep neural networks (DNNs) show their power
on speech signal processing, e.g. speech separation [8],
automatic speech recognition (ASR) [9] etc. Following this,
DNNs are also used for the task of DOA estimation [10–12].
In [10], Takeda and Komatani employed a DNN with 7 hidden
layers to predict the DOA with a discriminative training
method. The input feature is eigenvectors of correlation
matrices at each frequency bin. Experimental results showed
that the method is sensitive to the reverberation. In [11],
GCC was used as the feature of a one-hidden layer perceptron
neural network. Results showed that it is robust to high
level noises and strong reverberations. In [12], CNN-based
method was proposed, in which phase component of short
time Fourier transform (STFT) was used as feature of CNN.
The CNN-based method showed robustness to noise and
small perturbations in microphone positions. A problem for
all above supervised-based methods is that the model has to
be retrained overall when the structure of the microphone
array changes, e.g. microphone number changing.

In this paper, we proposed a method combining CNN
and LSTM to address the online DOA estimation in noisy
and reverberant environments. Unlike the existing methods
which mainly rely on the array geometry and a short signal
observation, the proposed approach uses a special feature
to learn the relationship between the received signals and
the DOA. In addition, experimental results show that the
proposed method is robust to the topologies of microphone
array and the trained model can get a better performance on
a new microphone array structure use only very few data for
adaptation.

2. SYSTEM DESCRIPTION

2.1. DOA Estimation as a Classification Problem

The problem of DOA estimation based on DNN can be
formulated as a J-class classification problem, where
each class corresponds to a possible angle in a set Θ =
{θ1, ..., θJ}, and the estimated angle is given as the class with
the highest posterior probability. The number of classes J
depends on the array geometry as well as the resolution of
the whole range. For example, the angle range of a circular
microphone array is from 0◦ to 350◦ and the total number of
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Fig. 1. Proposed model architecture

classes is J = 36, when the resolution is 10◦.

2.2. Model Architecture

After many trials, we select the best model, the architecture
of the proposed model is shown in Fig. 1. The model
consists of three convolutional layers, one LSTM layer and
a full connection layer (FCL). The activation function of
three convolutional layers and FCL is rectified linear units
(ReLU) [13]. Softmax [14] is used as the final-layer activation
function. Cross-entropy [15] is used as the loss function and
the optimizer is Adam gradient [16]. A dropout procedure
[17] with rate 0.5 is used for LSTM and full connection
layer to avoid overfitting. Each convolutional layer has
16 local filters of size 5×7 and the number of nodes for
LSTM and FCL is 300 and 1024, respectively. There are
no subsampling layers after convolutional layers, in our
experiments, inclusion of subsampling layers showed a slight
decrease in performance. The weights and the bias of model
are initialized randomly by uniform distribution.

2.3. Feature Extraction

Selecting a suitable feature is very important for learning
algorithm. In this section, we will introduce our feature in
details.

In time domain, the m-th microphone signal ym(k) with
noise vm(k) is modeled as

ym(k) = gm ∗ s(k) + vm(k) (1)

where s(k) is pure signal, gm is the channel impulse response
from the source to microphone m (m = 1, ...,M), where M
is the number of microphones.

Every channel is transformed to frequency domain. In this
research, a fixed 20-ms frame size is used with 50% overlap
between frames. The discrete Fourier transform (DFT) is
applied on every frame. The length of one frame is 320 and
the number of frequency bins is 161, where sampling rate is
16kHz.

We calculate the GCCPHAT between every two adjacent
microphone ym and ym+1 at location θ, as shown in Eq. (2)

GCCPHAT (t, f,m, θ) = Ψymym+1
(t, f)e−j2πτm,θ (2)

where t is the time frame index, and f is the frequency bin
index, Ψymym+1

is the generalized cross-spectrum defined as

Ψymym+1(t, f) = ϑ(t, f)E
[
Ym(t, f)Y ∗m+1(t, f)

]
(3)

where

ϑ(t, f) =
1√

E
[
|Ym(t, f)|2

]
E
[
|Ym+1(t, f)|2

] (4)

is a weighting function to overcome the impact of the
fluctuating levels of the speech source signal. E denotes
expectation. Ym is the spectrum at the m-th channel, Ym+1

indicates the first channel if m = M . The number of θ is 36
(from 0 degrees to 350 degrees with 10-degree resolution) and
we generate τm,θ of every location θ for every microphone
pair.

Then, the input data can be extracted from GCCPHAT
by:

G(t, f, θ) =
1

M

M∑
m=1

GCCPHAT (t, f,m, θ) (5)

Finally, we connect the G(t, f, θ) of every location θ in
sequence as feature. Since the power spectrum peak contains
information about DOA, we ignore the phase information and
only use the power spectrum of the feature as input. So the
size of one input frame is 36(directions) × 161(sub-bands) in
this study. In [11], they calculate GCCPHAT between every
two channel, so the length of one input frame is N × C2

M (N
is the dimension of GCCPHAT ).

3. EXPERIMENTS

3.1. Experimental Setup

The proposed method is evaluated on circular microphone
arrays with various microphone numbers and array radius.
The noisy and reverberant signals of microphone array
are simulated as following steps. First, given microphone
number and radius, we simulate a circular microphone array
in a shoebox-shaped room with dimension 4m × 5m × 3m
(length, width and height). The microphone array is placed
at the center of the simulated room and its height is 1m. The
target speaker is placed at one of the directions from 0◦ to
350◦ with 10◦ intervals, and the horizontal distance between
the speaker and microphone array is fixed at 1.5m. The height
of speakers is 1.7m. Next, we generate the room impulse
responses (RIRs) using the Image method [18], and the source
speeches are convolved with RIRs to form the reverberant
microphone array input signals. The reverberation time (T60)
is 0.5s by setting the absorption coefficients. Finally, the
additive noises are added to each microphone.
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3.2. Dataset

For the training set, a 6-channel circular array with a radius
of 0.035m is used. We randomly select 30 utterances from
the RASC863 Mandarin Chinese database [19] for each
source location. Each utterance is convolved with one RIR
corresponding to its direction. So the number of source
speeches is 1080 (30 utterances × 36 directions). Then
uncorrelated white noise is added to each reverberant speech
with SNR at 0 dB, 3 dB and 6 dB, respectively. The total
number of training data is 3240 (1080 × 3 SNRs).

We also use the similar way to generate the test data
which consists the matched condition, the radius-unmatched
and the number-unmatched conditions. For the matched test
set, we use the same array as the one in the training stage.
For the radius-unmatched test set, the radius is 0.04m and
0.05m for 6-channel circular array, respectively. The number-
unmatched test set is generated by using 4- and 5-microphone
with radius of 0.035m. The simulated test data is generated
by convolving 108 (36 directions×1 utterances×3 SNRs)
utterances selected from RASC863 corpus.

Since we focus on online DOA estimation which predicts
a direction for each frame, silence segments of target speech
are labeled as silence which means no direction. Therefore,
the size of the output target for each frame is 37 that
corresponds to 36 directions and 1 no direction. We perform
voice activity detection (VAD) [20] on clean speech to label
the silence and voice part.

3.3. Evaluation Metrics

To evaluate the performance of DOA estimation, previous
studies [11, 12] employed classification accuracy (the ratio of
the number of correctly estimated frames to the total number
of voice frames), which is rough for DOA estimation in
some cases, however, a slightly inaccurate estimate of DOA
is acceptable, such as beamforming. Here, we employ two
measurements 1) voice decision error (VDE), which indicates
the percentage of frames are misclassified in terms of voice
and voiceless, 2) accuracy ratio (AR) [21] on the voice
frames, i.e. DOA estimation is correct if the deviation of the
estimated angle is with in ±10◦ of the truth angle. The VDE
and AR are defined as follows:

V DE =
Np→n +Nn→p

N
, AR =

N0.1

Np
(6)

where Np→n and Nn→p indicate the number of frames
misclassified as voice and voiceless, respectively. N
represents the number of total frames in a sentence. N0.1

denotes the number of frames with the DOA estimation
deviation smaller than ±10◦ of the target. Np is the number
of all speech frames. Apparently, lower VDE and higher AR
indicate better DOA estimation.

4. EVALUATION AND COMPARISON

4.1. Evaluation

The proposed deep-learning based approach is evaluated
and compared to CNN-based classification method [12] for
DOA estimation. CNN-based method directly uses phase
component of the STFT coefficients of the received signals
as input. And the target is 36 directions corresponding to the
DOA classes. The model consists 3 convolutional layers, each
containing 64 small filters of size 2×2 and two full connection
layers each has 512 units. The activation function of output
layer is softmax and the others are ReLU.

Table 1 shows the results of two methods (CNN and
proposed) in matched conditions. It can be seen that two
methods have similar VDE (32.91% vs. 33.17% on average).
However, the proposed method achieves much better results
on AR (40.10% vs. 75.29%). This is mainly because we
use LSTM to track the long-time dependence of the DOA
information.

To evaluate the robustness of the proposed method to the
topology of microphone array, we conduct two experiments,
1) fixing microphone number and changing radius; 2)
changing microphone number. Table 2 shows the results
in radius-unmatched conditions. It can be seen that when the
radius of circular array changes to 0.04m, both methods have
very similar results on both VDE and AR, compared with
their results in training condition (radius is 0.035m). When
the radius increases to 0.05m, VDE for both methods are
similar to the matched condition and the proposed achieves
even better results. Performance of both methods drops about

Table 1. DOA estimation performance in matched conditions

Radius
(meters)

SNR
(dB)

Type of Models
CNN proposed

VDE AR VDE AR

0.035

0 33.00 32.55 33.84 67.06
3 32.87 38.73 33.74 73.53
6 32.85 49.01 31.93 85.29

Avg. 32.91 40.10 33.17 75.29

Table 2. DOA estimation performance in radius-unmatched
conditions

Radius
(meters)

SNR
(dB)

Type of Models
CNN proposed

VDE AR VDE AR

0.04

0 33.02 31.77 34.52 68.77
3 32.94 39.70 33.02 75.24
6 32.90 46.03 31.97 82.90

Avg. 32.95 39.17 33.17 75.64

0.05

0 33.09 28.15 31.65 61.32
3 33.13 35.61 30.70 73.08
6 33.10 41.42 29.37 77.33

Avg. 33.11 35.06 30.57 70.58
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Table 3. DOA estimation performance in number-unmatched
conditions

Radius
(meters)

SNR
(dB)

Microphone Number
4 5

VDE AR VDE AR

0.035

0 38.37 31.26 37.72 54.04
3 39.70 46.68 35.36 69.56
6 37.96 52.87 33.68 79.13

Avg. 38.68 43.60 35.59 67.58

5% on AR. Apparently, the proposed method is still much
better than the CNN method.

When the number of microphone changes, the CNN
method cannot work because the size of the input feature
doesn’t match the one in training condition. But our method
can still work by using the trained model. Table 3 shows
the results of number-unmatched conditions where the new
circular array has 4 and 5 microphones with 0.035m radius. It
should be mentioned that in these cases, the distance between
neighboring microphones is also changed. From Table 3, we
can find that the performance of the system is getting worse
as the number of microphones decreases. The next step is to
do adaptation on the original model to observe whether the
performance could be improved.

4.2. Adaptation

To do adaptation, we generate the noisy and reverberant
speeches on new topologies of microphone array. Specifically,
we generate only one utterance for each direction at each
SNR. For a specific new microphone array, the total number
of adaptation data is 108 (36 directions×3 SNRs). During the
adaptation, we only update the kernel weights of CNN and
fix the others. The number of adaptation epoches is 4. After
adaptation, the new model is evaluated on the test set.

Fig. 2 shows the VDE and AR on before and after
adaptation of a 4-mic array with a 0.035m-radius. It can be
seen that the performance gets better, i.e. VDE drops about
2.5% and AR increases about 7.6% on average. Fig. 3 shows
the results on before and after adaptation of a 6-mic array
with a 0.05m-radius. There is also a significant improvement
after adaptation, i.e. VDE drops about 3.8% and AR increases
about 10.2% on average. It means that the model can be
efficiently adapted to a new microphone array.

Another question is that what the difference will be
between the adaptive model and a newly trained model using
a large amount of matched data. To answer this question, we
use 3240 noisy and reverberant speeches which are generated
on a 6-mic array with a 0.05m-radius to train a new model.
Fig. 4 shows the performance comparison of the adaptive
model and the newly trained model. We can find that the
newly trained model achieves slightly better results than the
adaptive model. By adaptation, the proposed model ensures
the performance while greatly saving the time of retraining.

Fig. 2. The performance of 4-microphone array on before and
after adaptation

Fig. 3. The performance of 0.05m-radius array on before and
after adaptation

Fig. 4. The comparison of the adaptive model and the newly
trained model

5. CONCLUSION

In this paper, we proposed a CNN-LSTM model to estimate
DOA. Due to an input feature design, the proposed method
can adapt to a new microphone array conveniently with a few
data. In this research, the position of speakers is fixed, and
future work involves the movements of position.
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