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ABSTRACT
We propose a learning algorithm for cell-load approximation
in wireless networks. The proposed algorithm is robust in the
sense that it is designed to cope with the uncertainty arising
from a small number of training samples. This scenario is
highly relevant in wireless networks where training has to be
performed on short time scales because of a fast time-varying
communication environment. The first part of this work stud-
ies the set of feasible rates and shows that this set is compact.
We then prove that the mapping relating a feasible rate vector
to the unique fixed point of the non-linear cell-load mapping
is monotone and uniformly continuous. Utilizing these prop-
erties, we apply an approximation framework that achieves
the best worst-case performance. Furthermore, the approxi-
mation preserves the monotonicity and continuity properties.
Simulations show that the proposed method exhibits better
robustness and accuracy for small training sets in comparison
with standard approximation techniques for multivariate data.

Index Terms— machine learning, 5G, multivariate scat-
tered data, data interpolation, minimax approximation

1. INTRODUCTION

The load-coupling model [1, 2, 3] is widely used when de-
signing networks according to the long-term evolution (LTE)
standard and it has also attracted attention in the context of
fifth-generation (5G) networks. More specifically, the load-
coupling model has been used in various optimization frame-
works dealing with different aspects of network design in-
cluding, but not limited to, data offloading [4], proportional
fairness [5], energy optimization [6, 7], and load balancing
[8].

The radio resource management (RRM) in future 5G
networks is expected to be similar to the RRM in orthogo-
nal frequency-division multiple access (OFDMA)-based net-
works such as LTE. Unfortunately many of the RRM problem
formulations, such as small-scale optimal assignment of time-
frequency resource blocks (RBs) to users, have been shown to
be NP-hard [9]. As a result, interference models that are able
to capture the long-term behavior of OFDMA-like networks
while giving rise to tractable problem formulations have been
the focus of recent research. The aforementioned non-linear
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load-coupling model is such a network-layer model that con-
siders long-term average RB consumption and it has been
shown to be sufficiently accurate [2]. In this model, the cell-
load at a base station (BS) is the proportion of RBs scheduled
to support a particular rate demand. Therefore, given some
power budget that can be used for transmission, each BS
needs to calculate the cell-load required to serve given rate
demands. In [4], the authors present an intuitive result show-
ing that cell-load is monotonic in user rate demand, and the
non-linear coupling between cells implies that an increase in
the rate demand in the network results in an increase in the
cell-load at each BS. Therefore before serving a higher rate
demand, it is important for a BS to have a reliable estimation
of the impact of this increase to the neighboring BSs in terms
of cell-load and interference. This estimation can be used to
make RRM and self-organizing-network (SON) algorithms
more reliable and efficient. The difficulty in performing these
management tasks lies in the need for calculating the expected
value of induced cell-load at BSs for given user rates. This
is because such a computation typically uses iterative meth-
ods requiring a large amount of network information such
as pathlosses and user rates, to name a few. To address this
challenge, we propose a robust and optimal machine learning
technique that allows BSs to approximate cell-load values
induced for any given rate demand vector. Moreover, the
complexity of the proposed method is low and the algorithm
can be implemented in parallel at each BS.

The contributions of this study are as follows. We first
study the feasible rate region and properties of the cell-load
as a function of rate demand vector. To the best of our knowl-
edge, not much attention has been devoted previously to the
structure of the feasible rate region. In particular, we show
that the feasible rate region is compact. In addition, we prove
that the cell-load is a uniformly continuous mapping over the
set of feasible rates.

Based on the above results, as our second contribution, we
address the problem of cell-load approximation for a given
rate demand vector. Previous studies dealing with this prob-
lem (for example, in the context of data offloading [4] and
maximizing the scaling-up factor of traffic demand [10]) have
used model-based methods that require full information about
channel gains, pathlosses etc. In contrast, we approach this
problem from a machine learning perspective, in which case
no channel information is required. Owing to the dynamic-
ity of dense wireless networks, any machine learning algo-
rithm has to train the network within a relatively small time
period. As a consequence, the training sample set is small
and the information about the unknown function to be ap-
proximated is scarce. In this challenging setting, we propose
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a learning algorithm that achieves robust approximation in
the minimax sense; i.e., the maximum possible error under
uncertainty is minimized. Yet another difficulty lies in ob-
taining an approximation that preserves the properties of the
cell-load, in particular, the monotonicity of the cell-load map-
ping in rate demand. However, incorporating monotonicity in
machine learning algorithms for multivariate data with arbi-
trary dimensions is very challenging, and most of the well-
known machine learning algorithms do not preserve the prop-
erties of the true function [11]. The work in [12] shows that
monotonicity is also hard to incorporate in popular online
learning methods. In contrast to these studies, the author in
[11] proposed a shape preserving multivariate approximation.
We propose a vector-valued version of this method for cell-
load approximation at multiple BSs in parallel. Finally, we
compare our method with popular multivariate machine learn-
ing techniques through simulations and show that our method
outperforms them under the aforementioned restriction of a
small training set.

2. PRELIMINARIES

Throughout this study, R+ and R++ denote the set of non-
negative and positive reals, respectively. We denote by C(X )
the space of vector-valued continuous functions defined on
X ⊂ RN++. Likewise, we denote by g ∈ C(X ) a vector-
valued function whose values at a point x ∈ X are given by
g(x) = [g1(x), g2(x), ..., gM (x)]T , where each gi : X →
[0, 1], i = 1, . . . ,M , is a continuous function. The norms ‖·‖
and ‖·‖∞ are the standard Euclidean norm and the l∞ norm,
respectively. We denote by X the closure of the set X . For a
compact set X and a vector-valued continuous function g ∈
C(X), we define the supremum or uniform norm ‖·‖C(X ) as

‖g‖C(X ) = sup
x∈X

max
1≤i≤M

gi(x), (1)

where the sup is attained because the pointwise maximum
of finitely many continuous functions is continuous and X is
compact. We denote by (x)+ the operation max{x,0} for a
vector x ∈ RN , where in contrast to the max operation in
(1), the max is taken component-wise and 0 is the all-zero
vector. The distinction between the two usages of the max
operation will be clear from the context in which they are
used. Finally, for two vectors x and y, x ≤ y should be
understood component-wise.

Definition 1 (Lipschitz Monotone Functions). Let f : RN++ →
[0, 1]M be a vector-valued function with the ith component
fi : RN++ → [0, 1], i = 1, ...,M . We say that f belongs to the
class of Lipschitz Monotone Functions (LIMF) if f is mono-
tone on X and each component fi is Lipschitz on X ⊂ RN++

, i.e., (∀i ∈ {1, 2, . . . ,M})(∃Li ∈ R+)(∀x ∈ X )(∀y ∈
X ) |fi(x)− fi(y)| ≤ Li ‖x− y‖.

2.1. Non-linear Load Coupling Model

In this study, we consider a dense urban cellular base station
(BS) deployment. The service area is represented by a grid
of pixels, each occupying a small area which we refer to as
a test point (TP) [1, 10, 7]. We use rj > 0 to denote the
aggregated user rate demand within TP j per unit time. It is
assumed that if the rate requirement of each TP is met, then

the rate requirements of all users in the network are also met.
We useM = {1, 2, ...,M} and N = {1, 2, ..., N} to denote
the set of BSs and TPs, respectively. We consider a downlink
transmission scenario and denote the vector of power levels of
all BSs by p ∈ RM++. Throughout this study, the power and
user assignment (denoted by N (i)) for each BS i is assumed
to be fixed. We denote by ρ = [ρ1, ρ2, ..., ρM ]T the vector
containing the cell-load levels at all BSs. The cell-load ρi is
given by [1, 10]

ρi =
1

RB

∑
j∈N (i)

rj
log(1 + γij(p,ρ))

, (2)

where R is the number of time-frequency resource blocks
(RBs), B is the bandwidth of each RB, and γij(p,ρ) :=
piGi,j/(

∑
k∈M\{i} pkGk,jρk + σ2) (where Gi,j ≥ 0 is the

channel gain and σ2 is the noise power) is the signal-to-noise
ratio (SINR) of the link between BS i and TP j. If we collect
the rate demand of TPs in a vector r = [r1, r2, ..., rN ]T , then
for a fixed rate vector r ∈ RN++, writing (2) for each i ∈ M
results in a system of non-linear equations,

ρ = q(ρ, r), (3)

where q : RM+ × RN++ → RM++ is referred to as the load
mapping. Given r ∈ RN++ the mapping Γr : RM+ → RM++ :
ρ 7→ q(ρ, r) is a positive concave mapping [13], so it also
belongs to the class of standard interference mappings [14].
Therefore, for a given rate demand vector r ∈ RN++, the set
Fix(Γr) := {ρ ∈ RM++|Γr(ρ) = ρ} contains at most one
fixed point. If Fix(Γr) 6= ∅, the unique fixed point is the
solution to (3). We define a feasible rate demand as follows:

Definition 2 (Feasible Rate Demand Vector). A rate demand
vector r ∈ RN++ is feasible for the network if and only if
Fix(Γr) 6= ∅ and 0 ≤ ρ∗ ≤ 1, where ρ∗ ∈ Fix(Γr).

Denote by Xf the set of all feasible rate demand vec-
tors as defined in Definition 2. Denote by rmin ∈ RN++,
the minimum rate requirement of users and consider the set
Xmin := {r ∈ RN++|r ≥ rmin}. In the remainder, we re-
strict our attention to the set of feasible rate demand vectors
(or rate region) X := Xf

⋂
Xmin and the set of fixed points

Y :=
{
ρ ∈ [0, 1]M |(∃r ∈ X )Γr(ρ) = ρ

}
. Furthermore, we

assume that X ,Y 6= ∅. In the following section, we proceed
to study some properties of X and the corresponding fixed
points.

3. FEASIBLE RATE REGION AND FIXED POINTS

In this section we show that the feasible rate region X is com-
pact and the fixed points are generated by a uniformly contin-
uous monotonic mapping on this set. The compactness of the
domain set and continuity of the function to be approximated
are necessary conditions for the proposed learning algorithm
in Section 4.

We start this section with a simple result stating that the
fixed point of the load mapping in (3) is monotonic in rate
demand. Owing to the space restrictions, the proofs for most
of the results are provided in the extended version [15].

Lemma 1. Consider any two rate demand vectors rk, rj ∈ X
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and the fixed points ρj ∈ Fix(Γrj ) and ρk ∈ Fix(Γrk). Then
rj ≥ rk ⇒ ρj ≥ ρk.
Lemma 2. The feasible rate region X is bounded.

We are now in a position to present the main results of this
section. These results enable us to apply robust and optimal
approximation methods in Section 4.

Proposition 1. The feasible rate region X ⊂ RN++ is com-
pact.

In what follows, we denote by f : X → Y : r 7→ ρ ∈
Fix(Γr) the function that maps each r to the unique fixed
point of the mapping Γr in (3). The following theorem shows
that f is uniformly continuous over the compact set X .

Theorem 1. The function f : X → Y is uniformly continu-
ous over X .

Proof. SinceX is compact, every infinite sequence inX has a
convergent subsequence whose limit is in X . Let (rn)n∈N ⊂
X be an arbitrary convergent sequence, and let the point r∗ ∈
X be its limit. To prove that f is continuous, we need to show
that limn→∞ f(rn) = f(r∗). To this end, let (ρn)n∈N ⊂
Y be the corresponding sequence of (f(rn))n∈N. Since Y
is compact, such a sequence has a convergent subsequence
(ρn)n∈K1⊂N whose limit ρ∗ exists and belongs to Y . The
corresponding sequence of rate vectors (rn)n∈K1⊂N is a sub-
sequence of the convergent sequence (rn)n∈N ⊂ X and there-
fore also convergent. Now consider the function g(ρ, r) =
ρ − q(ρ, r), where q is the load mapping, and note that this
function is continuous and (∀n ∈ K1 ⊂ N) g(ρn, rn) = 0.
It follows from the definition of a continuous function that
limn∈K1

g(ρn, rn) = g(ρ∗, r∗) = 0. Therefore, the limit
of the subsequence (ρn)n∈K1⊂N is the unique fixed point
f(r∗) = ρ∗ and limn∈K1

f(rn) = f(r∗). Since X is com-
pact, f is uniformly continuous on X .

4. THE LEARNING PROBLEM

In this section we present a learning algorithm which is not
only robust and optimal in a challenging machine learning
scenario, but also preserves the monotonicity and continuity
of the function to be approximated.

4.1. Minimax Optimal Aprroximation

Let the training data set be denoted by D = {(rk,ρk)}Kk=1,
(rk,ρk) ∈ (X × Y)}, where ρk := f(rk) are the mea-
sured cell-load values generated by the underlying function
f : X → Y . Our objective is to approximate the value f(r)
for any r ∈ X , i.e., our objective is to solve an interpola-
tion problem given D. In the classical approximation theory
[16, 17, 18], the data interpolation problem entails computing
an approximation g of the function f by observing the val-
ues in the set D, and then replacing future evaluations of f(r)
with g(r) for r ∈ X . We have shown by Theorem 1 that
f is a uniformly continuous function on the compact set X .
Clearly there are infinitely many functions in the space C(X )
that interpolateD. Since we are interested in a robust approx-
imation of the unknown f∗ ∈ C(X ), we aim at minimizing
the worst-case error [17, 19],

Ew(g) = sup
f∈C(X )

‖f − g‖C(X ) , (4)

where g ∈ C(X ) is confined to a class of functions such that
f∗(rk) = g(rk), k = 1, . . . ,K.

Unfortunately, if the only information about f∗ are the ob-
servations in D and the fact that f∗ ∈ C(X ), the worst-case
error can be arbitrarily large for some appropriately chosen
g ∈ C(X ). However if f∗ belongs to a compact subset of
C(X ), the sup in (4) is attained and we can guarantee a fi-
nite worst-case error. A sufficient condition for compactness
of a subset in the space C(X ) is that all functions in the sub-
set are Lipschitz continuous with the same Lipschitz constant
[11]. Moreover, Lipschitz continuity imposes a nonlinear re-
striction on the function class. In this case it has been shown
in [16], that for any given r ∈ X , the values f∗(r) belong to
a closed interval, and the optimal approximation to f∗(r) is
the midpoint of this interval. This means that no matter how
inconvenient the machine learning scenario is (for example, a
small sample set and fast changing statistics), we are guaran-
teed a certain finite worst-case error. Therefore, in addition to
the monotonicity and uniform continuity properties of f we
presented in the previous section, we make the following as-
sumption:
Assumption 1. The function f : X → Y : r 7→ ρ ∈ Fix(Γr)
is a (component-wise) Lipschitz monotone function (LIMF)
on the set X (see Definition 1).

We can now state the optimal approximation as an opti-
mization problem.

Definition 3 (Optimal Approximation). LetD = {(xk,ρk) ∈
(X ×Y}Kk=1, with X compact, be a data set and assume that
ρk := f(xk), k = 1, . . . ,K, are values generated by an un-
known function (F 3)f : X → Y , where F ⊂ C(X ) is a
set of LIMF functions. The minimax optimal approximation
problem is stated as follows:
Problem 1. [17, 11, 19] Find g : X → Y , such that

g ∈ arg min
g∈S

Emax(g) (5)

where S := {g ∈ C(X )|g(xk) = f(xk),∀k ∈ {1, . . . ,K}},
and Emax(g) := maxf∈F ‖f − g‖C(X ) is the worst-case error
from (4) computed over the set F .

In [11], the author provides a framework for monotone in-
terpolation of Lipschitz functions defined over a compact set
by using a central scheme [17, 18], that can be used to con-
struct an optimal solution for Problem 1. The following Fact
summarizes the important properties of an optimal solution
constructed using this framework.
Fact 1. Let D = {(xk,ρk) ∈ (X × Y)}Kk=1, be a dataset
generated by an unknown function f ∈ F , where F is a set of
LIMF functions (see Definition 1). Then, we have the follow-
ing:

1. An optimal minimax approximation g ∈ C(X ) of f ∈
F is given by

(∀i ∈M)(∀x ∈ X ) gi(x) =
σil(x) + σiu(x)

2
, (6)

where σil(x) = maxk{fi(xk) − Li‖(x − xk)+‖},
σiu(x) = mink{fi(xk) + Li‖(x − xk)+‖}, fi(xk) =
ρki , and Li is the Lipschitz constant of the ith compo-
nent fi.

2. g ∈ F ⊂ C(X ).
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Algorithm 1 Cell-Load Estimation At Each BS
1: Training: (a) Collect the training data set Dnoise = {(rk, yk =
f(rk) + ε(rk))}Kk=1. (b) Perform the estimation of L and data
smoothing to construct the compatible D = {(rk, ρk)}Kk=1 as
described in Section 5.1.

2: Online Prediction: Given a new rate demand vector r ∈ X ,
perform the direct computation (6) in Fact 1

g(r) =
1

2
(max

k
{ρk − L‖(r− rk)+‖})+

1

2
(min

k
{ρk + L‖(r− rk)+‖}).

5. ALGORITHM AND SIMULATION

We consider a network with M = 10 BS sites and N = 50
TPs placed randomly. Each TP is connected to exactly one BS
with the best received SNR. The pathloss for links between
BSs and TPs follows the 3GPP ITU propagation model for
urban macro cell environments. In the following, we restrict
our attention to a single BS and omit the index i because the
cell-load approximation (gi in (6)) is computed independently
at each BS.

5.1. Noisy Training Data

Practical systems are subject to noise during measurement,
so that instead of a data set D = {(rk, f(rk))}Kk=1, a noisy
training data set Dnoise = {(rk, yk = f(rk)) + ε(rk))} is
available, where ε(rk) is the measurement noise assumed to
be bounded. As a consequence, yk might not be compatible
with the monotonicity property of f and must be smoothed
to obtain a compatible set. In more detail, we first estimate
the Lipschitz constant L by L := maxk 6=j

|yk−yj |−2ε
‖rk−rj‖ , where

ε := supk |ε(rk)| [20]. The monotone-smoothing problem is
given by a linear program (LP) [11]

min .
qk+,q

k
−≥0

K∑
k=1

|qk|

s.t. qk − qj ≤ yj − yk + L‖(rk − rj)+‖,
where k, j ∈ {1, 2, . . . ,K}, qk = qk+ − qk−, |qk| = qk+ + qk−;
and, qk+, q

k
− ≥ 0 are the optimization variables. The smoothed

compatible values can be calculated as ρk := yk + qk. An
LP is a convex optimization problem and can be solved by a
standard convex solver.

5.2. Implementation and Complexity

The cell-load estimation algorithm is shown in Algorithm 1.
Note that, for a given r ∈ X , each BS i ∈ M can calculate
the component gi(r) independently of other BSs using (6) .
Therefore, Algorithm 1 is scalable to a larger dense network
and is amenable to distributed implementation. The training
step can be performed by standard convex solvers whereas the
complexity of the online prediction step is linear in sample
size K, i.e, O(K). Therefore for small sample sizes consid-
ered in this study, Algorithm 1 exhibits a fast computational

Fig. 1. RMSE and (Pearson’s) Correlation coefficient

speed.

5.3. Results

We train the network over the set X = {r ∈ R50
++|rmin ≤

r ≤ rmax}, where rmin = (106)1 and rmax = (107)1 is the
pre-configured range (in bits/s) of rate vectors and 1 ∈ R50

++
is the ones vector. We calculate the cell-load values using the
fixed point iterative method [14] with the cell-load mapping
(3). Other important parameters are: RB = 20 MHz, (∀i ∈
M)pi = 1 W, σ2 = 1.38×10−23×300/20×105. Normally
distributed noise with ε = 0.05 is added to the data. The
training step is performed by a standard convex solver.

We compare the performance of Algorithm 1 and two
other standard machine learning techniques, namely the stan-
dard Gaussian kernel regression and the 2-nearest neighbor
interpolation. Note that neither of these two techniques are
in general shape preserving. We use these two techniques
because they are able to handle problems involving high-
dimensional multivariate scattered data such as the case in
this study [11]. For brevity we compare the quality (in terms
of Pearson’s correlation coefficient) and accuracy (in terms
of root mean square error (RMSE)) for cell-load predictions
at a single BS. Similar results were obtained for each BS.
We simulate increasing sample size K and make 100 000 test
predictions at random values of rate demand vectors in X for
each value of K to gather reliable statistics.

It can be observed in Figure 1 that our proposed frame-
work shows a more robust and consistent performance both
in terms of quality of prediction and accuracy over the range
of sample sizes as compared to the other two techniques, es-
pecially for small sample sizes, i.e, it is robust under uncer-
tainty. The improvement in RMSE with increasing sample
sizes is due to the decrease in uncertainty about the true func-
tion f . Note that even though the cost function (4) which Al-
gorithm 1 optimizes is not the same as the RMSE, we can still
represent its performance using a standard error measure like
RMSE. At values near K = 600 the three techniques show
comparable performance in terms of RMSE, but in contrast
to our framework, the other techniques are not guaranteed to
be shape preserving and the predictions might not be compat-
ible with the monotonicity property of the function.
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