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ABSTRACT 

Though tremendous progresses have been made in object 

detection due to the deep convolutional networks, one of the 

remaining challenges is the multi-scale object 

detection(MOD). To improve the performance of MOD task, 

we take Faster region-based CNN (Faster R-CNN) 

framework and work on two specific problems: get more 

accurate localization for small objects and eliminate 

background region proposals, when there are many small 

objects exist. Specifically, a feature fusion module is 

introduced which jointly utilize the high-abstracted semantic 

knowledge captured in higher layer and details information 

captured in the lower layer to generate a fine resolution 

feature maps. As a result, the small objects can be localized 

more accurately. Besides, a novel Region Objectness 

Network is developed for generating effective proposals 

which are more likely to cover the target objects. Extensive 

experiments have been conducted over UA-DETRAC car 

datasets, as well as a self-built bird dataset (BSBDV 2017) 

collected from Shenzhen Bay coastal wetland, which 

demonstrate the competitive performance and the 

comparable detection speed of our proposed method. 

Index Terms—multi-scale object detection, feature 

fusion, the Region Objectness Network, convolutional 

neural network 

1. INTRODUCTION 

Though tremendous progresses have been made in object 

detection recently due to the deep convolutional neural 

networks (DCNNs)[1, 2], multi-scale object detection 

(MOD) is one of the remaining challenging tasks. As shown 

in Fig.1, costal wetland bird detection and vehicles detection 

for traffic surveillance are two typical MOD problems in the 

real world, which contain different scales of objects and 

have a large proportion of small objects in distant view. 

Upon such applications, experiments showed that the 

performance of the state-of-art object detection methods for 

MOD tasks is unsatisfactory. 

One of most important and successful frameworks for 

generic object detection is the region-based CNN (R-CNN 

family) method[3-5]. This family of methods divided the 

object detection process into two tasks, including proposals 

generation; proposals classification and regression. In this 

study, we work on Faster R-CNN framework[5]. In 

principle, Faster R-CNN generates the object proposals by 

Region Proposals Network (RPN) and implements the 

classification and regression by RoIs-wise classification 

network (RCN). Specifically, RPN extracts proposals by 

generating candidate boxes of specific size and aspect ratio 

at each region of the image. Then, these proposals are 

further classified into object categories and background by 

RCN. With DCNNs, Faster R-CNN has shown high 

accuracy on mainstream object detection benchmarks [1, 2, 

6]. Moreover, a variant of networks derived from Faster R-

CNN also achieve state-of-art results in many other 

computer vision problems beyond object detection [7-10]. 

However, for MOD tasks, the performance of Faster R-

CNN is also unsatisfactory. Carefully analysis shows that 

there are two main problems. 

First, in Faster R-CNN method, the high-level feature 

maps have significantly lower resolution than the original 

image, which are more effective to capture high-level 

semantic knowledge but insufficient to capture fine-grained 

spatial details. Therefore, using the high-level feature maps, 

it is difficult to get the precise location of small objects. 

Second, with many small objects for the MOD tasks, areas 

of the background are greatly larger than that of the 

foreground. As a result, RPN generates many redundant 

background candidate boxes (termed as background 

proposals). However, the redundant background proposals, 

which do not cover any objects, will cause data imbalance 

for further training task in RCN [11]. 

To tackle the problems discussed above, we propose a 

new MOD method based on Faster R-CNN framework by 

introducing a feature fusion module and a novel Region 

Objectness Network. Firstly, to supplement the fine-grained 

knowledge for small objects in the final feature 

representation, we introduce a feature fusion module to fuse 

  
Fig. 1. Examples of multi-scale object detection. Costal 

wetland bird detection (left) and vehicles detection for traffic 

surveillance (right). 
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the strongly semantic representation in the top layers into 

the fine resolution intermediate layers. Secondly, to 

eliminate the redundant background proposals, a novel 

Region Objectness Network is developed. To provide 

meaningful performance evaluation as well as the need of 

the research project undertaken by our team, a costal 

wetland bird dataset, (BSBDV 2017) has been built, which 

contains more than 1700 costal images taken in different 

days and different time slots. Meanwhile, the performance 

evaluation is also conducted using a public UA-DETRAC 

car dataset for MOD task. 

The rest of paper is organized as follow: in Section 2, 

we present the details of our proposed MOD method; 

Section 3 presents intensive experiments and experimental 

analysis; Section.4 concludes our work. 

2. PROPOSED MOD METHOD 

In this section, we describe our proposed MOD network in 

details. Firstly, we describe the whole pipeline of the 

detection network in Section 2.1. Then, we present the 

feature fusion module in section 2.2. The RON is introduced 

in section 2.3. 

2.1. The pipeline of the detection network 

As introduced above, our proposed MOD method is based 

on Faster R-CNN framework [5]. Fig.2 shows the 

frameworks of Faster R-CNN and our MOD method, 

respectively. From Fig.2, it is clear that different from the 

Faster R-CNN, our MOD method mainly consist of 4 parts, 

including the feature fusion module, the Region Objectness 

Network (RON), the Region Proposal Network (RPN) and 

the RoIs-wise classification network (RCN). Following the 

protocol using in [12], we also use ResNet-101 as the 

backbone network, RPN, RON and RCN share the 

computation from conv1_x to conv4_x. In our study, as 

discussed in Section 1, to get better feature representation 

for small scale objects, a feature fusion module is designed. 

The details will be given in Section 2.2. To eliminate the 

redundant background proposals, a novel binary objectness 

map generate by RON is proposed. The details will be 

introduced in Section 2.3. Finally, the RoIs-wise 

classification network is applied to classify the generated 

proposals into object categories and background. 

2.2. Feature fusion module 

The illustration of our feature fusion module is shown in Fig. 

3. In order to get better feature representation for different 

scale objects (especially for small objects), semantic 

knowledge in the top layers and fine-grained details in 

shallower layers are fused. We choose the layer conv3_4 

and conv4_6 of the backbone network as the input of the 

feature fusion module. Both of them are the top layer of its 

stage. To make conv4_6 layer and conv3_4 layer have the 

same size, we employ a 2 × 2 deconvolution layer on 

conv4_6 to up-sampled the feature maps. In our design, the 

filter of deconvolution layer is fixed as bilinear. Besides, it 

is noted that the channel dimension of conv3_4 and conv4_6 

are different. To solve this issue, we insert a 1 × 1 

convolutional layer after conv3_4 to increase channel 

dimension. After these operations, the feature maps from 

different levels can be summarized point to point with 

equivalent weights. In order to further suppress the aliasing 

effect of the up-sampling process, a 1×1 convolutional layer 

is appended on the merged map to generate the final fusion 

feature. In conclusion, as described above, our designed 

feature fusion module is able to obtain the finer resolution 

fusion features which provide representation containing the 

highly abstracted knowledge and fine-grained details of 

small objects. 

 
Fig. 2. The overview of Faster R-CNN Framework (top) and our MOD method (bottom). 

 
Fig. 3. Illustration of the feature fusion module. Features are 

combined by element-wise addition. 
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2.3. Region Objectness Network 

In this subsection, we will introduce our proposed novel 

Region Objectness network (RON), which aims at 

eliminating the background proposals. We formulate the 

task as to predict the likelihood of each region in the input 

image being a foreground object as opposed to background. 

A RON takes an image of arbitrary size as input and outputs 

a binary objectness map. As shown in Fig.4., each pixel of 

the objectness map only corresponds to a region in the 

image, which is called its governing region here. We model 

this process with a fully convolutional network (FCN) [13], 

which enable computation sharing with the RPN and the 

RCN elegantly. 

As shown in Fig.5, to generate the objectness map, we 

append a 1×1×2 convolutional layer after the last shared 

convolutional feature maps to learn the score which 

measures the likelihood of the corresponding governing 

region being either a foreground object or a background one. 

According to the score, the background objectness maps and 

foreground objectness map are generated correspondingly. 

Then, each spatial position on the objectness map is labeled 

with the higher foreground/background objectness score 

category. 

Obviously, our approach is supervised method. For 

training the RON, an objectness label (being a foreground 

object or not) is assigned to each governing region. We 

assign 1 to a governing region which has an Intersection-

over-region (IoR, the ratio between the area of overlap and 

the area of governing region) overlap higher than 0.7 with 

any ground-truth box. A governing region whose IoR ratio 

is lower than 0.3 for all ground-truth boxes would be assign 

to 0. As shown in Fig. 4, the spatial size of the governing 

region is decided by the ratio of the input image size to the 

output objectness map size. It’s remarkable that a single 

ground-truth box may assign positive label to multiple 

regions. 

The loss function used is defined as: 

𝐿({𝑝𝑖}) =  
1

𝑁𝑐𝑙𝑠
 ∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗)

𝑖

 (1) 

where i is the governing region index, the classification loss 

𝐿𝑐𝑙𝑠  is the cross-entropy loss over two classes. 𝑝𝑖  is the 

predicted objectness score. The ground-truth label 𝑝𝑖
∗ is 1 if 

the governing region is positive, and is 0 if the governing 

region is negative. Here 𝑁𝑐𝑙𝑠  represent the total number of 

governing regions in an image. 

The RON is trained end-to-end by back-propagation 

and stochastic gradient descent (SGD). Each mini-batch 

arises from a single image that contains certain number of 

positive and negative governing regions. Further 

implementation details are given in section 3.2. 

3. EXPERIMENTS 

In order to evaluate the effectiveness of our proposed MOD 

method, we conduct experiments on two multi-scales object 

detection datasets, including the UA-DETRAC Object 

Detection Benchmark [14] and self-built bird dataset 

(BSBDV 2017). Average Precision is used as the evaluation 

metric followed by the standard PASCAL VOC criteria, i.e., 

IoU＞0.5 between ground truths and predicted boxes [1]. 

3.1. Datasets 

3.1.1. UA-DETRAC 

The UA-DETRAC Object Detection Benchmark [14] is a 

large scale car detection benchmark, which contains 1.21 

million car instances. The images are of resolution 960×540. 

In our experiments, we choose 1,500 images from traffic 

surveillance and one example is given in Fig.1. 

3.1.2. BSBDV 2017 

The birds dataset of Shenzhen Bay in distant view (BSBDV 

2017) is our self-built bird dataset, which aims to provide 

the community with sufficient bird images for multi-scale 

object detection research. We manually annotate 1,772 

images in BSBDV 2017 for 10 categories of birds and result 

in 7,835 labeled bounding boxes. The image resolutions in 

BSBDV 2017 are of 2736×1824 (344 images), 4288×2848 

(656 images) and 5472×3648 (772 images) respectively. 

Evaluating the images in BSBDV 2017, it can be seen that 

the size of birds varies greatly from 18×30 to 1274×632 

which is a great challenge for object detection. In our 

experiments, 1,421 images are used for training and the 

remaining ones are for testing. This dataset will be made 

publicly available. 

3.2. Implementation Details 

For both car detection and bird detection tasks, we use the 

ImageNet [6] pretrained ResNet-101 [12] model to initialize 

 
Fig. 5. Illustration the structure of RON. 

 
Fig. 4. An example image and its corresponding objectness 

map. Each pixel of the objectness map corresponds to a 

governing region with fixed size in the image. Yellow pixels 

indicate foreground governing region (yellow box) and purple 

pixels indicate background governing region (green box). The 

size of the governing region is decided by the ratio of the input 

image size to the objectness map size. 
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our backbone network. As shown in Fig. 2 and described in 

Section 2.2 and 2.3, the parameters of our designed 

convolutional layers for feature fusion and RON are 

initialized with “Xavier” [15]. We respectively resize the 

input image to 600 and 540 on the shorter side for BSBDV 

2017 and UA-DETRAC. The implementation is based on 

the publicly available Faster R-CNN framework [5] built on 

the Caffe platform [16]. 

The proposed MOD network is trained in the end-to-

end manner with Stochastic Gradient Descent (SGD), where 

momentum is 0.9, and weight decay is 0.0005, on a single 

NVIDIA GeForce GTX TITAN X GPU with 12GB memory. 
The learning rate is set of 0.0001 for 70k mini-batches, and 

0.00001 for the next 30k mini-batch. Each mini-batch 

involves 1 image and 512 object proposals per image. Other 

settings are followed by [3]. 

3.3. Detection accuracy 

In our experiments, the state of arts object detection 

methods including Region-free (SSD [17] and YOLOv2 

[18]) and region-based (Faster R-CNN [5]) have been taken 

as comparison methods. Table 1 and Table 2 provide the 

experimental results in terms of average precision on UA-

DETRAC and BSBDV 2017. From Table 1, we can see that 

the average precision of our MOD method is 71.1 on UA-

DETRAC, which is 27%, 4.1%, 12.8% and 8.8% higher 

than that of YOLOv2, SSD300, Faster R-CNN (ResNet-50) 

and Faster R-CNN (ResNet-101), respectively. Similarly, as 

shown in Table 2, on BSBDV 2017, our MOD method 

achieves 58.8%, which is 24.2%, 16.8%, 14.5% and 8% 

higher than that of YOLOv2, SSD300, Faster R-CNN 

(ResNet-50) and Faster R-CNN (ResNet-101), respectively. 

One example of detection results is shown in Fig.6. From 

Fig. 6, a comparison of the left and right images shows that 

the detection capability of our proposed MOD method is 

improved significantly. Let’s take bird detection as example. 

For small bird objects in distant view, our method gives 

more accurate bounding boxes in fitting the objects and 

much less missing bird objects. Meanwhile, for closer view, 

our MOD method also gives more accurate detection results 

and less missing cases compared with Faster R-CNN. 

Similar conclusions can be drawn for car detection. These 

experimental results validate the effectiveness of our 

proposed MOD method. 

3.3. Detection speed 

We evaluate the average running time of our proposed MOD 

method and Faster R-CNN for processing 1 image. Without 

loss of the generality, we take BSBDV 2017 as example and 

the results are presented in Table 3. Compared with Faster 

R-CNN, our MOD method asks a slightly smaller running 

time and much better precision accuracy. These 

experimental results indirectly demonstrate that our 

proposed MOD model is able to remove the redundant 

background proposals but keep more information for object 

detection under multi-scale object detection scenario. 

4. CONCLUSION 

In this paper, we proposed a multi-scale object detection 

method by introducing a novel a feature fusion module and 

a novel Region Objectness Network aiming at improving the 

localization performance of small objects and eliminating 

the redundant proposals. To facilitate this study, a self-built 

bird dataset (BSBDV 2017) is established which will be 

available for public. Our proposed MOD method exhibits 

strong competency in handling multi-scale object detection 

tasks, where our method achieves 8.8% and 8% higher 

average precision over that of Faster R-CNN (Resnet-101) 

on UA-DATRAC and BSBDV 2017, respectively. 

5. ACKNOWLEDGMENT 

This paper was partially supported by the Shenzhen Science 

& Technology Fundamental Research Program (No: 

JCYJ20160330095814461) & Shenzhen Key Laboratory for 

Intelligent Multimedia and Virtual Reality 

(ZDSYS201703031405467).  

Table 1 Detection results on UA-DETRAC 

Method Base Network proposals AP (%) 

YOLOv2 Darknet - 44.3 

SSD300 VGG-reduce - 67 

Faster R-CNN ResNet-50 1200 58.3 

Faster R-CNN ResNet-101 1200 62.1 

Ours ResNet-101 1200 71.1 

 

Table 3 Detection speed on BSBDV 2017 

Method Base 

Network 

AP 

(%) 

Time 

(sec) 

FPS 

Faster R-CNN ResNet-101 50.8 0.679 1.47 

Ours ResNet-101 58.8 0.611 1.64 

 

  

  
         (a) our MOD method       (b) Faster R-CNN(ResNet-101) 
Fig. 6. Detection results of our MOD method (a) and Faster R-

CNN (b) on BSBDV 2017(row 1) and UA-DETRAC (row 2). 

Table 2 Detection results on BSBDV 2017 

Method Base Network proposals AP 

(%) 

YOLOv2 Darknet - 34.6 

SSD500 VGG-reduce - 42 

Faster R-CNN ResNet-50 1200 44.3 

Faster R-CNN ResNet-101 1200 50.8 

Ours ResNet-101 1200 58.8 
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