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ABSTRACT

Forward Vehicle Collision Warning (FCW) is one of the most
important functions for autonomous vehicles. In this proce-
dure, vehicle detection and distance measurement are core
components, requiring accurate localization and estimation.
In this paper, we propose a simple but efficient forward ve-
hicle collision warning framework by aggregating monocular
distance measurement and precise vehicle detection. In order
to obtain forward vehicle distance, a quick camera calibration
method which only needs three physical points to calibrate
related camera parameters is utilized. As for the forward ve-
hicle detection, a multi-scale detection algorithm that regards
the result of calibration as distance priori is proposed to im-
prove the precision. Intensive experiments are conducted in
our established real scene dataset and the results have demon-
strated the effectiveness of the proposed framework.

Index Terms— Forward vehicle collision warning, vehi-
cle detection, distance measurement, camera calibration

1. INTRODUCTION

Significant effort has been made on the safety of road vehi-
cles in recent decades. Over 10 million people are injured
yearly worldwide in road accidents. Automatic driving and
assistance driving are the research directions to increase the
safety of passengers and of vehicles. Forward vehicle colli-
sion warning is the fundamental function in both automatic
driving and assistance driving.

A range of devices mounted on the vehicle could provide
the solution to this problem [1, 2]. The traditional systems
available today are typically based on radar sensors [3]. How-
ever, the narrow field of view and the poor lateral resolution
limit the performance of these systems. From a technological
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point of view, fusion of radar and vision information is an at-
tractive approach. In such a system [4, 5] the radar provides
accurate distance and velocity, while vision gets exact loca-
tions of forward vehicles. However, this solution is expensive
and complex in practical applications.

Considering these practical difficulties, a simple but ef-
ficient forward vehicle collision warning framework is pro-
posed using only vision information in this paper. The pro-
posed framework includes two stages. The camera calibration
stage obtains distance from forward vehicles to the camera,
while the vehicle detection stage based on the distance gets
exact locations of forward vehicles. The main contributions
of our framework are as follows: First, a simple but effective
framework is proposed for forward vehicle collision warning.
Since it is based on vision information, the framework is inex-
pensive. Second, distance information is utilized to improve
the performance of detecting forward vehicles.

The rest of this paper is organized as follows. Section 2
introduces the related work and Section 3 describes the pro-
posed framework. Experimental results are demonstrated in
Section 4 while conclusion is presented in Section 5.

2. RELATED WORK

2.1. Camera Calibration

Camera calibration has been studied extensively in computer
vision and photogrammetry. According to the dimension of
the calibration object, calibration methods can be roughly
classified into two categories as follows:

object-based calibration. Techniques in this category
are required to observe a calibration object [6, 7, 8, 9, 10].
Some of these methods [6, 7] require the geometry informa-
tion of object in 3D space with very good precision. These ap-
proaches always need an expensive calibration apparatus, and
a complex setup. Therefore, some methods calibrate camera
by observing a planar pattern shown at a few different ori-
entations [8, 9]. Since such a calibration pattern is easy to
be made, the setup becomes easier. In order to make cali-
bration easier, Zhang [10] proposes one-dimensional object
based calibration. It uses less knowledge of the observation
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compared to 2D and 3D object-based calibration methods.
Self-calibration. Techniques in this category don’t uti-

lize any calibration objects [11]. By moving a camera in a
static scene, the internal parameters of the camera will be es-
timated with image information alone. Though no calibration
objects are necessary, a large number of parameters still need
to be estimated. Computational complexity will be greatly
increased.

2.2. Vehicle Detection

Considering the practical applications, deep learning methods
will not be reviewed in this section. Vehicle detection ap-
proaches are mainly divided into two types : template-based
and appearance-based.

Template-based methods. Methods in this category ap-
ply predefined patterns from the vehicle class and perform
correlation between the image and the template. Li et al. [12]
propose an And-Or model that integrates context and occlu-
sion for detecting vehicles. Felzenszwalb et al. [13] propose
deformable part models to structure template model. Each
model is composed of parts with different viewpoints. They
detect vehicles by integrating various parts of vehicles. Wang
et al. [14] also propose a probabilistic inference framework
based on part models for improving detection performance.
Since these methods detect vehicles by matching template,
they are time consuming.

Appearance-based methods. Appearance-based meth-
ods learn the features of vehicles from a set of training im-
ages which should capture the variability in vehicle appear-
ance. Usually, appearance models treat a two-class pattern
classification problem: vehicle and nonvehicle. Zheng et al.
[15] design image strip features based on the vehicle struc-
ture for vehicle detection. Since features come from the side
view of the vehicle, this detector is sensitive to the viewpoint.
Dollar et al. [16] propose aggregate channel features (ACF)
and Yuan et al. [17] improve the features for detection. ACF
utilizes color information of the objects to improve the per-
formance.

3. OUR METHOD

As mentioned before, the proposed framework includes two
stages: camera calibration and vehicle detection. To simplify
the calibration course, a point-based calibration method [18]
is employed to get camera parameters and to calculate dis-
tance from the forward car. During the detection course, we
expand original ACF detector [16] into a distance-based mul-
tiple scale detector. The distance is not only used for forward
collision warning, but also employed for improving vehicle
detection.
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Fig. 1. The pinhole imaging model of forward point P. (a) is
the projection model and Eq 1 is derived from it; (b) shows the
relation of idealized image coordinate system xO1y to cam-
eras pixel location coordinate system uO0v.

3.1. Point-based calibration

Camera calibration is a necessary step in distance measuring
with monocular vision. In engineering practice, the object
distances are usually considerably larger than the focal length
of camera. Hence, the pinhole camera model can be used
to measure the distance. The geometry relationship of actual
point P on the ground and its projection point on the image
plane P1 is shown in Fig 1(a). According to [19], the distance
from point P to camera is:

d =
h

tan(α+ arctan[|(y0 − y)/f |])
, (1)

Here, α is the pitch angle of the camera; h is the height of the
camera from the ground; (x0, y0) is the cross point of optical
axis of the camera and the image plane; and y is the vertical
coordinate of P1. In order to simplify the calibration process,
let dx, dy denote the physical dimension of one pixel along
the x-axis and the y-axis separately. Then the coordinates of
point P1 in the image physical coordinate plane xO1y and its
position in the image pixel reference frame uO0v are related
by the transformation equation:

u =
x

dx
+ u0, v =

y

dy
+ v0, (2)

In theory, as the corresponding pixel location of (x0, y0),
(u0, v0) usually locates in the center of image. But in fact,
there might be slight departure due to fabrication. In that
case, u0 and v0 need to be measured. So, Eq. 1 can be
expressed as

d =
h

tan(α+ arctan[|(v0 − v)/fy|])
. (3)

Here, fy = f/dy. Hence, we can get the distance d by solv-
ing the ratio fy rather than calculating the optical length and
pixel physical dimension separately. In practice, the height of
camera h can be measured after the camera is mounted on the
car. Only fy, v0, α need to be calibrated. Based on Eq. 3,
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Fig. 2. Overview of our detection framework.

three fixed points are utilized to estimate camera parameters
in [18]. With the input of height h, distances information of
three calibration points (d1, d2, d3) and corresponding coor-
dinates (u1, v1), (u2, v2), (u3, v3), fy, v0, α will be solved.

This algorithm needs only three fixed points to complete
the calibration, which greatly reduces the computational com-
plexity. Different from traditional ones in Section 2.1, this
method estimates less parameters (only fy, v0, α and h) with
the purpose of measuring distance. Estimating less parame-
ters makes the calibration course easy to setup.

3.2. Multi-scale detection

When detecting forward vehicles, one of the greatest chal-
lenge is that vehicles have various scales at different dis-
tances. Multi-scale and multi-aspect ratio make this problem
difficult. Due to perspective principle of the camera, the
features of vehicles will change with different size. The
structural feature is significant when the forward vehicle is
near. However, when forward vehicles are far, they are made
up of a few pixels in the image plane. We can hardly get
structural features in this situation. Therefore, we apply color
based features [16] to detect forward vehicles and distance
information is employed to tackle multi-scale problem.

The proposed detection framework is exhibited in Fig. 2.
Given an input image I , we compute its channel features.
Then the boosting is used to train and combine decision trees
over these channel features to distinguish object from back-
ground. Next, a distance based multi-scale sliding window
approach is employed to detect vehicles. Fig.3 illuminates
the major differences between original ACF detector and the
proposed detector. Windows with various scales will slide the
whole image in the ACF detector, while the proposed detec-
tor uses several windows with certain scale and aspect ratio
to slide part of the image. Due to applying diverse windows
in different vertical coordinates, the proposed method will be
less time consuming.

The scale of sliding windows is related to distances be-
tween cars and the camera. Eq. 3 can be changed into the
following form:

v = v0 − fy tan(arctan
h

d
− α). (4)

Eq. 4 is the foundation of multi-scale detection with distance
prior. It indicates that if v0, fy and α are estimated, the verti-
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Fig. 3. The difference between original ACF detector and our
detector.

cal coordinate can be obtained by giving the real distance d.
Therefore, we build a mapping from forward distance to the
vertical coordinate in the image plane.

The distance prior can be calculated with a calibrated
camera according to Eq. 4. When camera calibration is
completed, we can not only obtain distance from for ward ve-
hicles to the camera, but also get locations in the image plane
according to the distance conversely. Table 1 demonstrates
some scales of sliding windows in different distance.

Table 1. The change of aspect ratio at different distances
distance / m scale vertical coordinate / pixel

5 400 × 275 482
10 110 × 95 325
20 50 × 45 260

On account of the mapping from forward distance to the
vertical coordinate, we don’t need to slide various size of win-
dows in the whole image. According to the distance prior, we
can use multiple scale sliding windows in different vertical
coordinates on the image. The size of sliding window can
be determined by statistics. During the statistical process of
window size, we discover that not only the scale but also the
aspect ratio of forward vehicles will change as the distance
varies. When the vehicle is far, its scale is small and the as-
pect ratio will be approximate to 1:1. However, the aspect
ratio of vehicles will change into nearly 1.5:1 when they are
close to the camera, e.g. 5 meters.

The reason for the change of aspect ratio is the exten-
sion distortion caused by wide-angle camera. Since drive
recorders always utilize the wide-angle camera, the change
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of aspect ratio does exist in practice. Although extension dis-
tortion can be calibrated and corrected, we don’t calibrate it in
practice. Calibrating more parameters will make calibration
course more difficult to setup. However, when measuring the
distance of a forward vehicle, extension distortion will not af-
fect this course. For the reasons above, extension distortion is
ignored in the calibration course.

According to the distance prior, our multi-scale detection
could search vehicles in different distance with a certain scale.
The main advantages of our multi-scale detection are as fol-
lows: First, we relieve the multi-scale problem in forward ve-
hicle detection. Then, due to sliding window with a certain
scale in different locations in an image, the proposed method
speeds up the detection course. Hence, our multi-scale de-
tection can be faster than the original one and reach 50fps on
CPU.

4. EXPERIMENT

To demonstrate the capabilities of the presented approach, ex-
tensive experiments are conducted and evaluated in an Intel i5
quad core CPU with 3.20GHz. In this section, we will intro-
duce the experiment from the following two aspects: calibra-
tion and detection.

Table 2. Experimental results of camera calibration
Car No. d / m d’ / m e∗ / m er / %

1 5.00 5.00 0.00 0.00
2 7.00 6.98 0.02 0.29
3 9.00 9.08 0.08 0.89
4 11.00 11.11 0.11 1.00
5 15.00 15.26 0.26 1.73
6 17.00 17.31 0.31 1.82

4.1. Validation of calibration method

In our experiment, the images comes from the camera of or-
dinary driving recorder and its size is 1280× 720. The height
of the camera is 122.5cm, and three fixed points used for the
calibration are 4m, 5m and 7m away from the camera. Their
vertical coordinate are 461, 428, 383. Following the calibra-
tion steps mentioned in Section 3.1, we obtain camera pa-
rameters for measuring distance. The calibration results are
α = 0.1194rad, fy = 1094.313 and v0 = 363.331. Then a
set of test cars are substituted into the algorithm to detect its
measurement error. The estimated distance is denoted by d′.
The absolute error and relative error can be expressed sepa-
rately as e∗ = |d− d′| and er = e∗/d. The measuring results
are demonstrated in Table 2.

As illustrated in Table 2, this algorithm performs well
when the points are near, and relative errors increase with
the distance becomes far. This is because that along with the

object getting farther, one pixel on the image covers longer
distance. In other words, if one pixel represents several cen-
timeters in the near, it may represent several meters in the far
distance. It is an inherent defect of monocular vision.

4.2. Validation of distance based detection

In order to illustrate the performance of the proposed detec-
tion method, comparisons are made between our detector and
[20, 12, 21, 16]. All of these methods are trained by KITTI
car detection dataset [22] and tested on 5400 images of real
scene collected by ourselves. The test images come from 30
different driving videos taken by the same recorder. These
videos cover urban road, highway, night, rainy and other sit-
uations. Each video is 3 minutes with 30 fps, and test images
are selected every one second. Considering the limitation of
computing resource in the practical application, deep learning
methods will not be compared in this section.

Table 3 shows the comparisons of detection rate and FPPI
(false positive per image). Benefiting from distance prior, our
detector has the knowledge of vehicle size in different ver-
tical coordinates. FPPI decreases obviously, which means
less false detection occurs during our framework. Because
we have certain scales in different vertical coordinates, our
detector performs better. Besides, certain scales also decrease
the number of sliding windows. It also makes the proposed
detector faster than others.

Our multi-scale detection framework can achieve 50
frames per second on CPU, which can meet the requirements
of other automatic driving and assistance driving applications
besides forward vehicle collision warning in the future.

Table 3. Comparison of various detection methods
Detection rate FPPI Time(s)/frame

DPM [20] 91.23% 0.098 4.0
And-Or [12] 89.08 % 0.133 3.0
SubCat [21] 92.70 % 0.087 0.7

ACF [16] 94.02 % 0.065 0.04
Ours 96.61% 0.046 0.02

5. CONCLUSION

In conclusion, we propose a simple but efficient forward ve-
hicle collision warning framework by aggregating monocu-
lar distance measurement and precise vehicle detection. Point
based calibrating algorithm greatly reduces the computational
complexity and can be easily achieved. Multi-scale detec-
tion has taken excellent advantage of distance prior to im-
proves accuracy and decrease time consumption. The pro-
cessing speed of the proposed framework can achieve 50 fps
on CPU and the experiments have exhibited its outstanding
performance.
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