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ABSTRACT

Neuroimage correspondence analysis is critical in appli-
cations that model neurodegenerative disease progression.
Establishing meaningful relations between non-rigid objects
such as brain structures poses a challenging topic in the bio-
imaging signal processing field. In this paper, we introduce a
novel nonlinear probabilistic latent variable model approach
to infer shape correspondences of brain structures. To this
end, we perform an unsupervised clustering process that is
automatically carried out by a nonlinear kernelized proba-
bilistic latent variable model. The kernel embeddings are
accomplished by using random Fourier features as nonlinear
mappings of 3D shape descriptors. We experimentally show
how the model proposed can accurately establish meaningful
relations between any pair of nonrigid shapes such as those
brain structures related to the Alzheimer’s disease.

Index Terms— Correspondence problem, Probabilistic
latent variable models, Random Fourier features, Neuroim-
age analysis.

1. INTRODUCTION

The correspondence problem in neuroimage analysis is a
challenge research topic consisting in establishing mean-
ingful relations between any pair of brain structures (static
registration problem) [1], or analyzing temporal changes
of a given neurodegenerative disease across time (dynamic
analysis of brain structures) [2].

Most of the correspondence methods for medical im-
age problems focus on computing different similarity metrics
based on texture descriptors such as the bag-of-words features
[3], largest common point-sets [4], and geodesic contours [5].
Though, most of these approaches only work over objects
of the same size, which gives a poor accuracy in nonrigid
matching processes [6].

Although similarity metrics could potentially capture
shared information between objects, these metrics are not
easy to define [7] since brain structures are nonrigid objects
that exhibit morphological changes between subjects (brain
volumetry over a population) and shape deformations over

time in a neurodegenerative disease (i.e., Alzheimer and
Parkinson) [8].

Instead of defining similarity metrics, an alternative ap-
proach consists in using unsupervised learning for object
matching. These methods aim to establish meaningful cor-
respondences in scenarios where a nonrigid object describes
a given shape, and the similarity measure between objects
cannot be computed [9]. Variational Bayesian matching [10]
and Bayesian canonical correlation analysis [11] are some
examples of these methods in which a given probabilistic
framework is used to model features between objects and
establish shape correspondences. Nonetheless, these methods
only handle full correspondence frameworks (i.e., point-to-
point matching) and linear analysis over the shape descriptors
(i.e., appearance descriptors), which makes them unsuitable
to model shared information between non-rigid objects, i.e.,
tissue shapes in MRI data [12] or volumes of brain structures
for studying progression of Alzheimer’s disease [13, 14].
High variability of these patterns such as curvedness and size
makes it necessary to compute the correspondences between
objects in a groupwise manner [15].

Probabilistic groupwise methods for unsupervised clus-
tering have the benefit that we can model multiple view data
without any correspondence information. Hence, we can
compute shared information among domains instead of an-
alyzing full correspondences by establishing point-to-point
relations [16]. In this paper, we introduce a nonlinear version
of the model proposed by Iwata et al. [16]. In particu-
lar, we provide a method for shape correspondence analysis
based on nonlinear unsupervised clustering of groupwise 3D
shape descriptors. The clustering process is carried out by
a nonlinear probabilistic latent variable model, in which we
use random Fourier features of the input data observations
[17]. In other words, we extend the many-to-many object
matching proposed by [16] using Hilbert space embeddings
of the input data [17]. Once the model is defined, we pro-
vide an stochastic EM algorithm for computing the necessary
posterior distributions of the probabilistic model.

The rest of paper proceeds as follows. Section 2 presents
the nonlinear unsupervised clustering approach. In section 3,
we report a comparison of our method with commonly used
approaches for unsupervised clustering. Then, we show the
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experimental results for the brain structures dataset. The pa-
per concludes in section 4 with some conclusions and future
works of the proposed method.

2. MATERIALS AND METHODS

2.1. Probabilistic Non-Linear Latent Variable Model for
Groupwise Correspondence

Let us define the input data set in D domains as X =
{Xd}Dd=1 , where Xd = {xdn}Nd

n=1 is a set of objects in
the dth domain, and xdn ∈ RMd is the input vector of the
nth object in the dth domain. As in nonlinear latent variable
models, we want to map the input data to a feature space
through a nonlinear map φ (·), so we can compute clusters of
feature vectors by using nonlinear functions [17].

As we are unaware of any correspondence between fea-
ture sets Φ = {Φd}Dd=1 in different domains, we set different
number of feature vectors Φd = {φ (xdn)}Nd

n=1, and differ-
ent dimensionalities Ld such that φ (xdn) : RMd → RLd .
Our approach assumes that we can find an infinite number
of correspondences between feature vectors, and each corre-
spondence j has a latent feature vector ζj ∈ RK in a latent
space of dimension K. Thus, feature vectors that have the
same cluster assignments sdn, or are related by the same la-
tent feature vector, establish a meaningful correspondence.

Each feature vector in φ (xdn) ∈ H in the dth domain is
generated depending on the domain-specific projection ma-
trix Bd ∈ RLd×K and the latent feature vector ζsdn that is
selected from a set of latent feature vectors Z = {ζj}∞j=1.
Here, sdn = {1, . . . ,∞} is the cluster assignment of feature
vector φ (xdn). Then, by using a latent space representation
of an infinite Gaussian mixture model, we define the proba-
bility of a feature vector φ (xdn) as

p (φ (xdn)|Z,W ,θ) =

∞∑
j=1

θjN
(
φ (xdn) |Bdζj , α

−1I
)
,

where W = {Bd}Dd=1 is a set of projections matrices, θ =
(θj)

∞
j=1 are the mixture weights, θj represents the probabil-

ity that the jth cluster is chosen and α is a precision param-
eter. By employing different projection matrices in Hilbert
space for each feature vector (domain-specific), we can han-
dle multiple feature sets with nonlinear properties and differ-
ent dimensionalities (i.e., size of the brain structures). Fig-
ure 1 shows the scheme of the proposed model, in which we
describe the relationship between feature vectors and latent
feature vectors in Hilbert space.

As in [16], we use a stick-breaking process to set the mix-
ture weights θ for a Dirichlet process with concentration pa-
rameter γ. The joint probability of the feature vectors Φ, and

the cluster assignments S =
{
{sdn}Nd

n=1

}D
d=1

is given by

p (Φ,S|W , a, b, r, γ) = p (S|γ) p (Φ|S,W , a, b, r) , (1)

Latent feature vectors

Descriptors in domain 1 Descriptors in domain 2
H H

B1 B2

Φ(X1) Φ(X2)

Z

Fig. 1. Scheme for the unsupervised nonlinear clustering
method for groupwise correspondence analysis. The figure
shows an example of establishing correspondences in Hilbert
space for two brain structures (left putamen).

where a, b and r are the hyperparameters.
By marginalizing out the mixture weights θ, p (S|γ) be-

comes

p (S|γ) =

γJ
J∏
j=1

(N·j − 1)!

γ (γ + 1) · · · (γ +N − 1)
,

where N =
D∑
d=1

Nd is the total number of feature vectors,

N·j represents the number of feature vectors assigned to the
cluster j, and J is the number of clusters that satisfies N·j >
0.

For our non-linear model, we give the derivation of the
likelihood in (1), in which latent feature vectors Z and preci-
sion parameter α are analytically integrated out. The resulting
expression is defined as

p (Φ|S,W , a, b, r) = (2π)
−

∑
d LdNd

2 r
KJ
2
ba

b′a′
×

Γ (a′)

Γ (a)

J∏
j=1

|Λj |1/2. (2)

Here, a′ = a+ ΣdLdNd

2 ,

b′ = b+
1

2

D∑
d=1

Nd∑
n=1

φ (xdn)
>
φ (xdn)− 1

2

J∑
j=1

µ>j Λ−1
j µj ,

(3)

and

µj = Cj

D∑
d=1

B>d
∑

n:sdn=j

φ (xdn),

Λ−1
j =

D∑
d=1

NdjB
>
d Bd + rI, (4)

where r is a parameter for controlling the precision of the la-
tent feature vectors Z, and Ndj is the number of feature vec-
tors assigned to cluster j in the d domain.
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2.2. Inference

To marginalize out the latent feature vectors Z, and the pre-
cision parameter α, we use stochastic EM algorithm [16].
Hence, we alternatively iterate collapsed Gibbs sampling for
the cluster assignments S, and maximum joint likelihood es-
timation of the projection matrices W . In the E-step, a new
value for sdn is sampled from

p
(
sdn = j|Φ,S\dn,W , a, b, r, γ

)
∝
p
(
sdn = j,S\dn|γ

)
p
(
S\dn|γ

)
×
p
(
Φ|sdn = j,S\dn,W , a, b, r

)
p
(
Φ\dn|S\dn,W , a, b, r

) ,

where \dn represents a value excluding the nth feature vector
in the dth domain. The first factor in the expression above is
given by

p
(
sdn = j,S\dn|γ

)
p
(
S\dn|γ

) =

{
N.j\dn
N−1+γ for an existing cluster

γ
N−1+γ for a new cluster.

In the M-step, the projection matrices W are estimated
by maximizing the logarithm of the joint likelihood (1). The
gradient of the joint likelihood is computed by

∂ log p (Φ,S|W , a, b, r, γ)

∂Bd
= −a

′

b′

 J∑
j=1

{
NdjBdµjµ

>
j

−
∑

n:sdn=j

φ (xdn)µ>j


− J∑

j=1

NdjBdΛj .

2.3. Random Fourier Features

Since the model parameters depicted above depend on the fea-
ture vectors φ (xdn), the expression for µj in the equation
(4) becomes intractable for kernelized methods1. As in [18],
we propose to approximate the mapping functions φ (xdn)
by computing a randomized feature map ϕ (xdn) : RMd →
RLd so that the inner product in equation (3) ensures that we
can approximate the kernel, k (x,x′) = 〈φ (x) ,φ (x′)〉 ≈
ϕ (xdn)

>
ϕ (xdn) [17]. Consequently, we compute these fea-

ture vectors by using random Fourier bases as

ϕ (xdn) ≡
√

2

Ld

 cos
(
ω>1 xdn + υ1

)
...

cos
(
ω>Ld

xdn + υLd

)
 , (5)

where
{
ωm ∼ N

(
0, β−1I

)}Ld

m=1
and υm is draw from

the uniform distribution {υm ∼ U (0, 2π)}Ld

m=1.

1A given kernel induces an inner product between infinite dimensional
feature vectors.

2.4. Databases

2.4.1. Real-world datasets

First, we test our method with three well-known machine
learning datasets such as Iris, Glass, and MNIST2. We set
up our experiments by randomly splitting the input data (i.e.,
features of the datasets) into two domains as Iwata et al. did
for their experiments in [16].

2.4.2. Brain structures dataset

For the neuroimage analysis, we used the MRI DB-UTP
database from the Technological University of Pereira. This
database contains volumetric MRI data from four patients
with Parkinson’s disease (at earlier and advanced stage of the
disease). The database was labeled by neurosurgeons from
NEUROCENTRO: The Institute of Parkinson and Epilepsy,
located in Pereira-Colombia. The database contains T1 se-
quences with 1mm × 1mm × 1mm voxel size and slices
of 512x512 pixels. The atlas was derived from a volumetric
T1-weighted MR-scans, using semi-automated image seg-
mentation, and three-dimensional reconstruction techniques.
The current version of this dataset consists of 1) the original
volumetric whole brain MRI of the volunteers; 2) a set of
detailed label maps and 3) the three-dimensional models of
the labeled anatomical brain structures.

3. RESULTS

To explore the accuracy of our approach, we first present a
comparative analysis of unsupervised clustering methods over
well-known machine learning databases. Then, we discuss
the benefits of performing probabilistic correspondence anal-
ysis over neuroimaging data.

3.1. Comparison with linear approaches

First, we test the performance of our approach regarding the
adjusted Rand index (we report both average and standard de-
viation), to quantify the similarity between the inferred clus-
ters [16]. For comparison, we use unsupervised clustering
matching (UCM)[16], k-means (KM), and convex kernelized
sorting (CKS) [19]. Table 1 shows that our approach outper-
forms the state-of-the-art methods for unsupervised cluster-
ing for the three databases. The results also show that by
mapping the observed data through random feature expan-
sions, the model can handle real-world datasets with better
performance than linear approaches (i.e., 0.17 for the MNIST
dataset against 0.085 obtained from the UCM method).

2We use the database of handwritten digits developed by LeCun et. al.
available at http://yann.lecun.com/exdb/mnist/
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Table 1. Adjusted Rand index of the proposed method against the state-of-the-art methods for unsupervised clustering.
Approach

Database UCM KM KM-CKS Ours
Iris 0.383± 0.189 0.224± 0.0910 0.254± 0.154 0.546± 0.080

Glass 0.160± 0.020 0.050± 0.008 0.052± 0.011 0.378± 0.045
MNIST 0.085± 0.016 0.030± 0.007 0.037± 0.008 0.167± 0.013

3.2. Groupwise shape correspondences

To establish groupwise correspondences between brain struc-
tures, we compute 3D shape descriptors based on scale-
invariant Heat Kernel Signatures as in [20]. From these shape
descriptors, we perform a random feature expansion to com-
pute the features vectors. We set each domain as a 3D shape
descriptor for a given brain structure. We evaluate our model
by using three relevant brain structures in the Alzheimer’s
disease such as the ventricle, thalamus, and putamen.

Figure 2 shows the experimental results of the brain cor-
respondence analysis. These experiments show our frame-
work working with two brain structures at different times of
the disease (early and advanced stage). From the results, it
can be noticed that even when the brain volumetry of a given
shape (i.e., see Putamen results in figure 2(a)) has lost part of
their mass as consequence of the neurodegenerative process,
our model is capable of establishing relevant correspondences
between brain structures.

(a) Putamen (b) Ventricle

(c) Thalamus

Fig. 2. Experimental results of brain correspondences analy-
sis using the proposed method. The figure shows a compari-
son between brain structures at different stages of the disease
(left and right depicts early and advance stage of the disease).

Finally, the table 2 shows both mean and standard devi-
ations computed from ground-truth correspondences estab-
lished through Voronoi tessellation. Here, the results show
that our model has better performance than the unsupervised
linear approach. The results prove that by modeling nonlinear

Table 2. Adjusted Rand index for the groupwise correspon-
dence analysis on brain structures.

Brain Structure UCM Ours
Ventricle 0.092± 0.015 0.287± 0.035
Putamen 0.098± 0.013 0.312± 0.023
Thalamus 0.157± 0.003 0.332± 0.017

mapping functions of the shape descriptors, the model can es-
tablish meaningful correspondences between brain structures.

4. CONCLUSIONS

In this paper, we have presented an unsupervised clustering
method for brain correspondence analysis through random
Features expansion. We demonstrated that by using random
Fourier features, the clustering process becomes more accu-
rate in comparison with common state-of-the-art methods.
Besides, the latent feature space shared among domains holds
more relevant information about the nonlinear mapping of
the random feature expansion. Moreover, the experimen-
tal results showed that our approach establishes meaningful
correspondences between 3D brain structures. In addition,
since the inferred correspondences fits a ground-truth Voronoi
tessellation accurately, our method proved to be useful in ap-
plications derived from matching processes. As future works,
we plan to analyze other inference methods based on varia-
tional inference to make our model fully Bayesian.
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