
EVALUATING MODELS OF DYNAMIC FUNCTIONAL CONNECTIVITY USING
PREDICTIVE CLASSIFICATION ACCURACY

Søren Føns Vind Nielsen1, Yuri Levin-Schwartz2, Diego Vidaurre3,
Tulay Adali2, Vince D. Calhoun5,6, Kristoffer H. Madsen1,4, Lars Kai Hansen1 and Morten Mørup1

1 Department of Applied Mathematics and Computer Science, Technical University of Denmark
2 Department of CSEE, University of Maryland, Baltimore County, USA

3 OHBA, Welcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK
4 Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Denmark

5 The Mind Research Network, Albuquerque, USA
6 Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, USA

ABSTRACT

Dynamic functional connectivity has become a prominent
approach for tracking the changes of macroscale statisti-
cal dependencies between regions in the brain. Effective
parametrization of these statistical dependencies, referred to
as brain states, is however still an open problem. We investi-
gate different emission models in the hidden Markov model
framework, each representing certain assumptions about dy-
namic changes in the brain. We evaluate each model by how
well they can discriminate between schizophrenic patients
and healthy controls based on a group independent compo-
nent analysis of resting-state functional magnetic resonance
imaging data. We find that simple emission models without
full covariance matrices can achieve similar classification
results as the models with more parameters. This raises
questions about the predictability of dynamic functional con-
nectivity in comparison to simpler dynamic features when
used as biomarkers. However, we must stress that there is a
distinction between characterization and classification, which
has to be investigated further.

Index Terms— Dynamic functional connectivity, Hidden
Markov models, Classification, Schizophrenia

1. INTRODUCTION

In the study of how the brain integrates information, com-
munication between disjoint regions is often described using
functional connectivity (FC). Over the last two decades, FC
analysis has relied on a stationary assumption, i.e. that the
statistical dependencies between regions do not change over
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time. This assumption has been shown to disregard a potential
wealth of information in the changes in between-region con-
nectivity, especially in resting-state functional magnetic res-
onance imaging (rs-fMRI) where this analysis approach has
been coined dynamic functional connectivity (dFC) [1, 2].

The most widely used approach in the dFC litterature is
the sliding-window correlation (SWC) [3], in which the (regu-
larized) correlation matrix was estimated in windows slid one
time-step at a time on group independent component analy-
sis (gICA) time-courses from rs-fMRI from healthy subjects.
After applying a k-means clustering to the estimated win-
dowed correlation matrices they found that the seven clusters
extracted varied especially in their connectivity within the de-
fault mode network.

However, SWC has been criticized because the choice of
window-length has a large influence on the results thus ques-
tioning the reliability of the extracted dynamics [4, 5, 6]. Fur-
thermore, the lack of consensus on what drives the underly-
ing neurological changes questions what is the appropriate
model for dFC. As an alternative to windowing setting the
window length to 1 and imposing smoothness in the state
transitions leads to a hidden Markov model (HMM), which
has been used for modeling dFC in several recent publica-
tions [7, 8, 9, 10, 11, 12].

Recently, dFC approaches have been applied in the con-
text of schizophrenic patients and shown promise in charac-
terizing the differences between patient and healthy controls.
In fMRI-studies, the focus has been on understanding hered-
ity of the disease [13], the disease influence on working mem-
ory [14] as well as hallucinations [15] and resting-state dFC
differences between medicated patient populations and con-
trols [16, 17, 18, 19].

In this paper, we investigate how different HMM model-
ing assumptions on the dynamics in resting state fMRI trans-
late into classification accuracy using a cohort of schizophrenic
patients (SZ) and healthy controls (HC). We accomplish
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this using the Bayesian hidden Markov model framework
[7, 11, 20] with different emission models and investigate
their ability to discriminate between SZ and HC. The differ-
ent emission models, that each encode different assumptions
on dynamics, will be compared using classification accuracy
on held-out data. The purpose of this paper, then, is to use
classification performance as a tool to evaluate the utility of
different modeling assumptions about dynamic functional
connectivity. Thus we pose the following research questions
to be answered: 1) How do different assumptions on dynamic
functional connectivity models influence classification per-
formance? 2) To what extent does modeling dynamic (as
opposed to static) functional connectivity influence classifi-
cation performance?

2. METHODS

We use the variational Bayes hidden Markov model (VB-
HMM) from [7,20] (and the accompanying MATLAB imple-
mentation1). The VB-HMM with K states has the generative
model for the observations xt ∈ Rp for t = 1...T ,

π0 ∼ Dir(κ0) (1)

π(k) ∼ Dir(κ(k)), (2)

zt|zt−1 ∼ Multinomial(π(zt−1)), (3)

Σ(k)−1

∼ W(Σ0, ν0), (4)

µ(k) ∼ N (µ0, λ
−1Σ(k)), (5)

xt ∼ N (µ(zt),Σ(zt)), (6)

in which π0 is the initial state distribution vector of lengthK,
Dir(·) is the Dirichlet distribution, κ0 is the prior vector for
the initial distribution, π(k) is a row of the transition matrix,
κ(k) is the associated prior to that row, zt is the integer val-
ued state taking possible values from 1...K at time point t,
Σ(k)−1

is the precision matrix from the k’th state assumed to
be Wishart distributed (W) with priors Σ0 and ν0 whereas µ0

is the prior on the mean of each state with associated scaling
parameter λ.

To create a classifier from an HMM-model we use a
density-based approach. For that we need the predictive like-
lihood on held out subjects. We use a VB-approximation
[11, 21] to the predictive likelihood by calculating the free-
energy on the test set keeping the transition matrix and state
specific parameters fixed from training, and neglecting the
terms in the free-energy that have not changed from training.
This corresponds to for given training data X and test data
X∗ to the following bound multiplying by QX∗ (z

∗)
QX∗ (z∗)

= 1 and

1Code was downloaded from the following Github repository: https:
//github.com/OHBA-analysis/HMM-MAR in July 2016

using Jensen’s inequality,

ln p(X∗|X) ≈ ln

∫ ∫ ∫ ∫
[p(X∗z∗|π0,π,θobs)

QX(π0)QX(π)QX(θobs)] dπ0dπdθobsdz
∗

≥ 〈ln p(X∗, z∗|π0,π,θobs)〉QX(π0)QX(π)QX(θobs)QX∗ (z∗)

− 〈lnQX∗(z
∗)〉QX∗ (z∗), (7)

in which θobs is all the parameters in the emission model,
QX(·) is the fitted variational distribution to the training set
and QX∗(·) is the corresponding distribution for the test set,
whereas z∗ is the state sequence of the test set.

For a given training and test split we end up with two
models each only trained to their respective group, MSZ

and MHC . Now we can evaluate for a new data set, X∗,
what model/group was most likely to generate the data by
Bayes rule, p(MSZ |X∗) = p(X∗|MSZ)p(MSZ)∑

c={HC,SZ}
p(X∗|Mc)p(Mc)

, in

which p(X∗|MSZ) is the predictive likelihood on test set
X∗ by model MSZ and p(MSZ) is our prior of observing
that model. We set this to the empirical proportions in the
training data, i.e. p(MSZ) =

#SZ
#SZ+#HC .

It is unclear what characterizes differences between SZ
and HC. We therefore consider the six different emission
parameterizations given in Table 1 each based on different
characterizations of dFC. The diffences could be driven by
changes in interaction between ICA components accounted
for by having the full covariance Σ(k) (“Mean+Cov” and
“Zero-Mean”), or potentially only by within component dif-
ferences not taking interactions into account (“Diag-Cov”
and “Diag-Cov Zero-Mean”), or solely changes in mean ac-
tivity with stationary (co-)variance (“Stationary Cov” and
“Stationary Diag-Cov”). By varying the model order we fur-
ther quantify if differences are best characterized by static
differences between groups (K = 1) or relies on the dynamic
characterizations (K > 1). We thus use the classification ac-
curacy to quantify which parameterization best discriminates
between SZ and HC.

3. RESULTS

In the following we will present the results from a syn-
thetic study and a resting-state fMRI data set containing
schizophrenic patients and healthy controls. In all of the anal-
yses we set the priors in the HMM models to their defaults as
explained in [7].

Equivalence of Different Emission Models: There are
many different ways of parameterizing the underlying brain
dynamics. In the six emission models we have chosen there
are some equivalences in the representations which we have
to take into consideration when interpreting the results. To il-
lustrate this we have generated two data sets (mimicking two
groups for classification) from two “Stationary Diag-Cov”
models in Figure 1 (left panel). Both models have two states
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Name [Free Parameters] Parameterization
(Description)

Mean+Cov [K(p+ p(p+ 1)/2)] Σ(k)−1

∼ W(Σ0, ν0), k = 1...K

(Bias and component interaction) µ(k) ∼ N (µ0, λ
−1Σ(k)) k = 1...K

Zero-Mean [Kp(p+ 1)/2] Σ(k)−1

∼ W(Σ0, ν0), k = 1...K
(No bias but only component interaction) µ(k) = 0 k = 1...K

Diag-Cov [2Kp] σ
(k)−1

i ∼ G(a0, b0), i = 1..p, k = 1...K

(Bias and within component modulation) Σ(k)−1

= diag
([
σ
(k)−1

1 , σ
(k)−1

2 , ..., σ
(k)−1

p

])
, k = 1...K

µ(k) ∼ N (µ0, λ
−1Σ(k)) k = 1...K

Diag-Cov Zero-Mean [Kp] σ
(k)
i ∼ G(a0, b0), i = 1...p, k = 1...K

(No bias but only within component modulation) Σ(k)−1

= diag
([
σ
(k)−1

1 , σ
(k)−1

2 , ..., σ
(k)−1

p

])
, k = 1..K

µ(k) = 0 k = 1..K
Stationary Cov [p(p+ 1)/2 +Kp] Σ−1 ∼ W(Σ0, ν0)
(Bias with stationary component interaction) µ(k) ∼ N (µ0, λ

−1Σ) k = 1..K
Stationary Diag-Cov [p+Kp] σi ∼ G(a0, b0), i = 1..p
(Bias with stationary within component modulation) Σ−1 = diag([σ−11 , σ−12 , ..., σ−1p ])

µ(k) ∼ N (µ0, λ
−1Σ) k = 1..K

Table 1: Overview of the six different HMM emission model parameterizations tested. The model is written for the emission
space Rp, i.e. we observe time series from i = 1...p regions or independent components, and we model that with K states.
The diag-operator used above takes a p-dimensional vector as input and produces a p × p matrix with the input vector in the
diagonal and zeros elsewhere. Furthermore, G(a, b) denotes the gamma distribution.

(K = 2) but the states differ in their mean values over the two
groups making the classification task possible. However, in
the bottom of Figure 1 we show the static covariance matrix
for each group, i.e., equivalent to fitting the ”Zero-Mean”
model with one state. We notice that the classification task
is still feasible since the two covariance matrices are very
different even though we have a model mismatch in terms of
which model generated the data.

To investigate this more systematically, we generated a
synthetic dataset containing two groups with 100 subjects
in each; the individual subjects data were generated with
T = 150 timepoints (matching the data used in the subse-
quent analysis) in p = 3 dimensions. We used the state-means
from the synthetic data illustrated in Figure 1 (left panel),
and otherwise identical parameters across the two groups
(i.e. π, π0, and diagonal covariance). The data were de-
meaned and set to unit variance as done in the GIFT-toolbox
(cf. section below). The classification accuracy obtained
from 10-fold stratified cross-validation can be seen in Fig-
ure 1 (right panel). We see that all the emission-models can
achieve perfect classification accuracy, except the ”Diag-Cov
Zero-Mean” model that is unable to account for the dynamic
difference in mean activation present across the two groups.

Schizophrenia Classification We ran our analysis on a
cohort consisting of 192 subjects’ resting-state fMRI data
(COBRE) [22]. Of those, 101 subjects were diagnosed as
schizophrenic or schizoaffective (SZ) and 91 subjects were
healthy controls (HC). We ran a gICA using the GIFT tool-

box [23] with the ERBM algorithm [24] and 85 compo-
nents. We restarted the algorithm 25 times and chose the best
run using the minimum spanning tree (MST) criterion [25].
Afterwards we calculated the fractional amplitude of low-
frequency fluctuation (fALFF) [26] of each component and
removed all components with a fALFF lower than 3, yielding
48 components. Finally, we visually inspected the spatial
maps and removed four additional components that had spa-
tial overlap known noise sources (e.g. ventricles), such that
we ended up with 44 ICs. Note that GIFT by default stan-
dardizes the time-series to have zero mean and unit variance
which will become important when we compare the different
model parameterizations. We estimate the accuracy of the
classifiers by stratified 10-fold cross-validation. Each HMM-
model was initialized 5 times, and the model with the best
free-energy was chosen for the subsequent classification step.
In Figure 1 we report the mean accuracy over folds, and the
standard error, i.e. the standard deviation on the mean. We
also report the performance of the baseline classifier, that
assigns all data points in the test set to the largest class from
the training set.

From the performance curves of the different HMM mod-
els we observe that all models except the “Diag-Cov Zero-
Mean” have similar classification accuracies (the errorbars
overlap). There seems to be a low influence on how many
states we choose; there are intervals, i.e. from 4-6 states,
where the more complex models “Mean+Cov” and “Zero-
Mean” pull ahead in average classification accuracy, however
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Fig. 1: Left panel: Synthetic toy-data showing the equivalence of different emission models. We generated two datasets in three
dimensions each from a ”Shared Diag-Cov” emission model (see top). Each model contains two states with a change point in
the middle of the sequence. Below, we visualize the empirical correlation matrix for each data set. Right panel: Classification
accuracy as a function of the number of states used in the different HMM-models, where the errorbars indicate the standard
error over folds. Accuracy was estimated based on stratified 10-fold cross-validation. Note that the diagonal covariance models
(“Diag-Cov”, “Diag-Cov Zero-Mean” and “Shared Diag-Cov”) start in K = 2 due to time-series standardization employed by
the GIFT-toolbox, which makes the one state model unable to discriminate.

the errorbars still overlap with some of the simpler models.

4. DISCUSSION

In this work, we evaluated different assumptions on dFC
within the HMM framework, by their ability to discriminate
between schizophrenic patients (SZ) and health controls (HC)
based on a short resting state fMRI scan.

Answer to research question 1: The performance gap be-
tween the full-parameterized model (with both mean and co-
variance for each state) and the more constrained models was
fairly low. Only the “Diag-Cov Zero-Mean” model assum-
ing that only the variance of the components varies over time,
gave a noticeable drop in classification accuracy when com-
pared to the other models. As simple models accounting for
dynamic changes in the mean performed on par with models
accounting for interactions between components this could
indicate that the ICA we have employed as a ”preprocess-
ing” step has sufficiently demixed the problem. Thus the dis-
criminative signal is mainly characterized by within compo-
nent differences, and not in their coupling. From Figure 1
it seems that different model parameterizations can carry the
same discriminative information. For example, if a certain
state is characterized by one region having above mean acti-
vation and another region having below mean activation, this
can be modeled in several ways in the HMM as illustrated
in the synthetic data. The most natural way would be to do
this using an emission model with a mean, however, a zero-
mean model with full covariance could also model this by a
large negative covariance between the two regions in ques-
tion. Since we do not see a large discriminative effect in the

more complex emission models compared to their constrained
counterparts this could make the case that the differences be-
tween SZ and HC is adequately captured by non-stationary
mean IC activation.

Answer to research question 2: We saw that the perfor-
mance of the different models was not highly influenced by
the number of states chosen in the model. This could again
be an effect of the representation that we have chosen, i.e. the
ICA. If all the “dynamics” are captured by the ICs and we are
in a sufficiently demixed space then there is no need to subse-
quently fit a temporally dynamic model like the HMM beyond
how these ICs are stationary coupled (i.e., the “Zero-Mean”
emission model for K = 1).

We stress that there can be a distinction between the
model that is best for classification and the model that best
characterizes the data. The conclusion we make about the dy-
namic models here are based on their ability to discriminate
between two populations, and even though we conclude that a
simple emission model can bring us a long way, this does not
mean that full-covariance models should be ruled out. How-
ever, care should be taken when estimating many parameters
(such as full covariance matrices in the complex emission
models) when data is limited. The difference between char-
acterization and classification has to be investigated further,
along with the relationship between different subspace rep-
resentations, such as PCA, ICA as well as atlas parcellations
into functional units, and how these representations influence
the estimated dynamic functional connectivity. We argue that
the presently considered predictive classification accuracy is
an important complementary tool to tools quantifying models
ability to characterize data [11].
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