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ABSTRACT
The field of automatic sleep stage classification based on
EEG has enjoyed substantial attention during the last decade,
which has resulted in several supervised classification algo-
rithms with highly encouraging performance. Such super-
vised machine learning algorithms require large training sets
that have been manually labelled, and are time- and resource-
consuming to acquire. Here we present a semi-supervised
approach that can learn to distinguish the sleep stages from
a one-night data set where only a fraction has been manu-
ally labelled. We show that for fractions larger than 50%,
our semi-supervised approach performs as good as a similar,
fully-supervised model.

Index Terms— EEG, semi-supervised learning, sleep
stage scoring, non-negative matrix factorizaton, generaliz-
able Gaussian mixture model

1. INTRODUCTION

Analyzing the temporal evolution of sleep stages is an impor-
tant diagnostic tool in sleep medicine. Manually labeling the
stages in a polysomnogram (PSG) for subsequent analysis
is unfortunately highly time- and resource-consuming. The
automation of PSG-labelling using machine learning tech-
niques has therefore enjoyed substantial attention during the
last decade. Excellent results have been achieved using so-
phisticated supervised machine learning algorithms [1] [2],
and the problem of automatic sleep stage classification is by
many considered solved. However, a supervised classification
algorithm with a low generalization error requires a large set
of labelled examples for training. In order to save time and
resources, it would be beneficial if a classification algorithm
could be trained on a data set where only a fraction of the
training examples has been labelled. However, it is important
that the performance of such a classifier still matches that of
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an algorithm that was trained using a fully labelled training
set.

In this work, we compare the performance of a semi-
supervised Gaussian Mixture Model (SS-GMM) against a
fully supervised Gaussian Mixture Model (FS-GMM). The
classification strategy is conceptually simple. A model is
trained such that a data point is first given a set of proba-
bilities to belong to each cluster component, much like the
responsibility in the traditional GMM framework. Further-
more, the probability for each cluster to represent each class
is learned using the information in the labelled part of the
data set. A test point is classified according to the posterior
probability governed by the responsibilities and the cluster-
class mapping.

All models in this work were subject specific, meaning
that they were trained and tested on each subject in the ex-
perimental data set separately. This is contrary to popular
practice in the field [3] [4] [5] [6]. In contrast to population
models, our focus on subject specific modeling allows us to
account for variation in individual brain dynamics and sleep
patterns.

Furthermore, the models were trained and validated on
EEG that was recorded before the EEG in the test set. This
mimics the use case where an initial, labelled recording is ac-
quired from a subject, from which a model can be trained and
validated. The model can then be deployed to automatically
label subsequent EEG recordings from the same subject.

2. EXPERIMENTAL DATA

The experimental data in this study consists of the SC record-
ings in the sleep-edfx-data base that is publicly available
on PhysioNet.org [7] [8] [9]. The data contains a pair of
PSG recordings from two consecutive nights from 19 healthy
subjects (10F + 9M) accompanied with expert-annotated
sleep stage labels. An additional subject is present in the
online repository, for whom only a single night was success-
fully recorded. This subject was excluded from the study.
The expert annotated labels were scored according to the
Rechtschaffen and Kales (R&K) classification rules [10].
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Fig. 1. Conceptual illustration of the classification method. In the first step, the sleep EEG is converted to a multi-tapered
spectrogram. In the second step, the spectrogram is decomposed into two matrices, W and H , using NMF. In the third step,
the weight values in the matrix H are scaled and used as features for a GMM-classifier. Two versions of the classifier are
compared, a fully supervised model and a semi-supervised model. This figure was made with data from the first subject’s first
night.

3. METHODS

The recording from the first night was used as training and
validation set, and the recording from the second night was
used as test set. The Pz-Oz channel, which was sampled at
100 Hz, was used as it has proven successful for sleep stage
classification in previous work, [1] [11]. The period of in-
terest for the classification problem was extracted from the
PSG recording using the labels. This period was defined as
15 min prior to sleep onset (defined as first epoch of N1) in
the evening until 15 minutes after the last sleeping epoch in
the morning. The rest of the recording was discarded. Epochs
of the sleeping EEG that were not scored or scored as Body
movement were excluded from the data set. Furthermore, the
stages N1 and N4 were in some cases too small or even non-
existing, so the N1 and N2 stages were merged into a single
”light sleep”-class, and the stages N3 and N4 were merged
into a single ”deep sleep”-class. This resulted in the four
classes Awake, REM, Light sleep and Deep sleep, as also done
in [12] [13] [14].

The sleep EEG in the training and test sets were decom-
posed into the time-frequency domain using multi-tapered
spectrograms, based on the Discrete Prolate Spheroidal Se-
quence (DPSS) taper functions [15]. The advantage of multi-
tapered spectrograms compared to single-tapered spectro-
grams is the reduction of both the bias and the variance of the
spectral estimate. The spectrogram matrix, Spec ∈ RM×N+ ,
was computed using the Chronux MATLAB toolbox [16]
[17] using 29 tapers, and in 30-second, non-overlapping win-
dows. Spec was log-transformed as S = ln(Spec + 1).
An example of S is shown in Fig. 1. One column of S now
corresponds to one observation in the data set (one epoch of
30 seconds). In order to reduce the dimensionality, S was
approximated using Non-Negative Matrix Factorization [18],
which seeks to minimize the Frobenius norm between the
original matrix and the matrix approximation

min ‖S −WH‖2F ,
s.t. W ∈ RM×D+ , H ∈ RD×N+ .

Minimization of the Frobenius norm is equivalent to as-

suming the entries of S are independently and identically
distributed with Gaussian noise around the meansWH [19].
This corresponds to maximizing the likelihood function,
p(S|WH, σ2) = N (S|WH, σ2I), where N (·|·, ·) is the
normal distribution

N (S|WH, σ2I) =
∏
i,j

1√
2πσ2

exp

−
(
sij − [WH]ij

)2
2σ2

 .
The optimal value of the common dimension D is computed
by minimizing the Bayesian Information Criteria (BIC) [19]

BIC = − ln p(S|WH, σ2) +D(M +N) ln(M ×N). (1)

The columns ofW are basis functions that can be interpreted
as band pass filters. Columns in H are weights indicating
how much of each basis functions in W is needed to repre-
sent the spectral contents in each epoch in the data set. One
column inH corresponds to one observation. The basis func-
tions of W were learned from the first night, and the same
functions were used when estimating the weights for the sec-
ond night. The matrix X = HT was scaled column-wise by
the 99th percentile across the entire training set, and was used
as input for the classifier.

The classification model was build such that it can be
trained with a variable amount of labelled data. Let the en-
tire training set D be composed of a labelled and an unla-
belled subset, D = Dl ∪ Du. Here, Dl consists of pairs of
data observations and their respective labels (xl,y), whereas
Du consists of data observations xu only. The relative size
of the two subsets is described by the fraction f = |Dl|/|D|.
If the model was trained using all the labels in the training
set, such that |Du| = 0 and f = 1, the model is fully su-
pervised. Conversely, if the model is trained using only some
of the labels in the training set, such that 0 < f < 1, the
model is semi-supervised. The classification model, which is
inspired by [20], is a generalizable Gaussian Mixture Model
(GMM) with k ∈ {1, 2, . . . ,K}mixture components that was
optimized using the EM algorithm. The classifier models the
posterior class distribution P (c|x), where c ∈ {1, 2, . . . , C}
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is one ofC mutually exclusive classes. The posterior distribu-
tion was learned through the complete generative distribution
of data D, p(D|θ) = p(Dl|θ)p(Du|θ), assuming indepen-
dence between unlabelled, Du, and labelled, Dl, data. Using
the GMM framework allowed for an optimization scheme in
terms of the log-likelihood,

ln p(D|θ) = ln
∑
Zl

p(X l,Y ,Zl|θ) + ln
∑
Zu

p(Xu,Zu|θ),

where Z ∈ RN×K =
[
(Zl)T, (Zu)T

]T
denotes the un-

known latent variables, with mutually exclusive row values
and θ = {µ,Σ}. By further assuming observations to be
i.i.d. as well as classes to be only conditionally dependent
on mixture components, the authors in [20] use the following
density for single observations:

p(xl,y|θ) =
∑
zl

P (y|zl)p(xl|zl,θ)P (zl,θ), (2a)

p(xu|θ) =
∑
zu

p(xu|zu,θ)P (zu,θ). (2b)

The latent conditional distribution of x can be written as

p(x|z,θ) =

K∏
k=1

p(x|k)zk ,

where p(x|k) = N (x|µk,Σk). The final class posterior is
thus given by

P (c|x) =
∑
k

P (c, k|x) ∝
∑
k

P (c|k)p(x|k)P (k),

where P (c|k) is a probability table, which we seek to estimate
along with θ.

In contrast to [20], we propose a different implementation
of the density of the unlabelled data observations in Eq. (2b).
This implementation proved to be more computationally ro-
bust on our data set. The proposed density is derived by in-
troducing B as the latent class association of xu, such that
Eq. (2b) now becomes

p̃(xu|θ) =∑
b,z

K∏
k=1

p(xu|k)zkP (k)zk
C∏
c=1

P (c|k)bczk .

Notice the density now includes the class cluster posterior
P (c|k), that models the probability of the link between clus-
ters and classes. The update equation for the class cluster
posterior now becomes

P (c|k)t+1 =

∑
n∈Du

P (k|xn)P (c|k)t+
∑

n∈Dl

δcynP (k|xn,yn)∑
n∈Du

P (k|xn)+
∑

n∈Dl

P (k|xn,yn)
,

where δcyn is the kronecker delta. In the new update equation,

the labelled and the unlabelled observations ”vote” on what
the next values in P (c|k)t+1 should be. The labelled obser-
vations vote using the information in their labels, whereas the
unlabelled observations vote for the current values in P (c|k)t.
By contrast, in [20], only the labelled data observations are
taken into account when determining P (c|k)t+1. This strat-
egy fails in the rare event that a cluster i takes responsibil-
ity for unlabelled observations only. In this case, the update
P (c|k = i)t+1 cannot be computed. By allowing the unla-
belled observations to contribute to the update, we avoid hav-
ing to introduce heuristic workarounds. The unlabelled ob-
servations will simply assign P (c|k = i)t+1 = P (c|k = i)t.
The values in P (c|k = i)t will be influenced by the labelled
observations that the cluster has previously encountered in its
path. We did not observe any significant difference in average
accuracy between the proposed method and the implementa-
tion in [20] combined with the rule that P (c|k = i)t+1 should
be set to the class priors when cluster i only contained unla-
belled observations.

In order to find the optimal number of mixture compo-
nents, a stratified 5-fold cross validation scheme was em-
ployed using the first night of each subject. For each optimal
model, the test performance was measured on the second
night. This approach was used for f = {0.2, 0.3, ..., 0.9, 1}.
Additionally, in order to account for the randomness in per-
formance associated with the stochastic choice of labelled
observations, we ran the entire pipeline 100 times. Thus we
report the expected test performance as the average test score
across the 100 runs. Each run was terminated by either con-
vergence or by running up to a maximum allowed iteration,
which was set to 1000.

The GMM mixture positionsµk were initialized using the
”k-means++”-algorithm, which provides better convergence
properties than the traditional k-means algorithm [21]. The
mixture covariances Σk were restricted as tied diagonals, and
were all initialized by the complete data covariance matrix,
and the cluster-class probability P (c|k) were initialized as the
class priors P (c).

4. RESULTS

The average test accuracy across all subjects is presented in
Fig. 2A. Naturally, the highest accuracy is achieved with f =
1, which is the fully supervised model, where accfully sup. ±
σfully sup. = 0.732 ± 0.003. Encouragingly, the accuracy for
f < 1 is relatively close to the fully supervised solution for
all f ’s. The average difference between the fully supervised
model and the semi-vised model across all subjects and all
runs, ∆test acc = accsemi-sup. − accfully sup. for different frac-
tions f is further illustrated in Fig. 2B. For fractions f ≥
0.5, we cannot reject with 95% certainty the null-hypothesis,
H0: SS-GMM = FS-GMM. Looking at individual test perfor-
mances, a few subjects showed a large deviation in test perfor-
mance relative to the average across all subjects. In Fig. 2C,
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Fig. 2. (A): The mean test accuracy over all 19 subjects. (B): The mean difference in test accuracy between the FS-GMM and
SS-GMM for each run across all subjects. (C): Results for the subject with the best average accuracy, one subject with a typical
average accuracy, and the subject with the lowest average accuracy. All error bars represent the 95 % confidence interval. (D):
Histogram of the optimal NMF dimension, Di, minimizing the BIC criteria Eq. (1). (E): Heat map of the distribution of Kopt

for each subject over the 100 runs. Darker values indicate more frequent chosen Kopt. (F): Histogram of the subject average
SS-GMM accuracy. Both (E) and (F) use a labelled fraction f = 0.5.

we show the average test accuracy for a subject with well,
poor, and typical performance. Most subjects had an average
fully supervised test accuracy similar to the average across all
subjects. Additionally, we found that the optimal number of
dimensions Di, i ∈ {1, . . . , 19} in the NMF decomposition
for most subjects was in the interval [50, 65], with a few ex-
treme values as seen in Fig. 2D. Turning to the distribution
of optimal number of GMM components Kopt across the 100
runs, we found relatively peaked distributions for most sub-
jects, as illustrated in Fig. 2E. Finally, the distribution of the
average semi-supervised test performance is shown in Fig. 2F
with f = 0.5 for each subject.

5. DISCUSSION AND CONCLUSION

As seen in Fig. 2C and Fig. 2F, there is a large variability
in the test performance between subjects. To address this,
we made an investigation into each subjects data distribu-
tions. The prior class distribution of the training and test
set was analyzed. We generally found high differences in
priors for those subjects where we achieved a lower test accu-
racy. We suspect this might reflect a significant difference in
data distributions between the two nights, thus violating the
cluster-hypothesis on which our model relies. Interestingly,

the SS-GMM approach outperforms the FS-GMM approach
for the worst performing subject, and the test accuracy de-
creases with the labelled fraction f . This behaviour was only
seen for this subject only. A possible explanation may be
that the fractional label information acts as a regularizer to an
otherwise over-fitted model.

Turning to the optimal number of dimensions Di in the
NMF decomposition, one could argue that it should be op-
timized as a hyper-parameter alongside K through cross-
validation. Using the BIC approach, we seemed to find fairly
large dimensions which may not be desirable. Regarding
Kopt, our findings indicate an importance of optimizing the
number of clusters, due to the peaked distributions.

Since we only have one test night in the data set, we have
no estimate of the temporal variation of test performance over
several nights. Future research should illuminate the test per-
formance of a one-night-trained model over timescales such
as weeks and months.

In conclusion, it is feasible to build an automatic sleep
stage classification algorithm where only a subset of the train-
ing set has been labelled. For our approach, fractions larger
than 50 % yielded an average test performance that matches
that of a fully supervised model. This potentially offers a
substantial reduction in work load for sleep scorers.
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