
END-TO-END OPTIMIZED SPEECH CODING WITH DEEP NEURAL NETWORKS

Srihari Kankanahalli

Bloomberg LP
skankanahall@bloomberg.net

ABSTRACT

Modern compression algorithms are often the result of la-
borious domain-specific research; industry standards such as
MP3, JPEG, and AMR-WB took years to develop and were
largely hand-designed. We present a deep neural network
model which optimizes all the steps of a wideband speech
coding pipeline (compression, quantization, entropy coding,
and decompression) end-to-end directly from raw speech data
– no manual feature engineering necessary, and it trains in
hours. In testing, our DNN-based coder performs on par with
the AMR-WB standard at a variety of bitrates (∼9kbps up to
∼24kbps). It also runs in realtime on a 3.8GhZ Intel CPU.

Index Terms— speech coding, deep learning, neural net-
works, end-to-end training, compression

1. INTRODUCTION

The everyday applications of data compression are ubiqui-
tous: streaming live videos and music in realtime across the
planet, storing thousands of images and songs on a single tiny
thumb drive, and more. In a way, improved compression was
what made these innovations possible in the first place, and
designing better and more efficient methods of compression
could help expand them even further (to developing nations
with slower Internet speeds, for example).

Essentially all modern compression standards are hand-
designed, including the most prominent wideband speech
coder: AMR-WB [1]. It was created by eight speech coding
researchers working at the VoiceAge Corporation (in Mon-
treal) and the Nokia Research Center (in Finland) over two
years, and it provides speech at a wide variety of bitrates
ranging from 7kbps through 24kbps. (For reference, uncom-
pressed wideband speech has a bitrate of 256kbps.)

Recently, deep neural networks have shown an incredible
ability to learn directly from data, circumventing traditional
feature engineering to produce state-of-the-art results in a va-
riety of areas [2]. Neural networks have seen significant his-
torical interest from compression researchers, but almost al-
ways as an intermediate pipeline step, or as a way to optimize
the parameters of an intermediate step [3]. For example, Kr-
ishnamurthy et al. [4] used a neural network to perform vector
quantization on speech features; Wu et al. [5] used an ANN

as part of a predictive speech coder; and Cernak et al. [6] used
a deep neural network as a phonological vocoder.

Our proposal is different in nature from all of these: we
reframe the entire compression pipeline, from start to finish,
as a neural network optimization problem (along the lines of
classical autoencoders). As far as we know, this is only the
second published work to learn an audio compression pipeline
end-to-end – the previous being an obscure early attempt by
Morishima et al. in 1990 [7] – and the first to compete with
a contemporary standard. Cernak et al. [8] proposed a nearly
end-to-end design for a very-low-bitrate low-quality speech
coder in 2016; however, their pipeline still required extraction
of acoustic features and pitch (and was also quite complex,
composing several different deep and spiking neural networks
together). All other related designs we know of employ ANNs
as a mere component of a larger hand-designed system.

In the domain of image compression, there has been some
interest in training ANN-based systems since the 1990s [9],
but this has not yielded state-of-the-art results until fairly
recently either (starting August 2016, when Toderici et al.
trained a neural network model outperforming JPEG [10]).
Thus, it seems our work is on the cutting edge of both deep
learning research and compression research.

2. NETWORK ARCHITECTURE AND TRAINING
METHODOLOGY

Our network architecture, shown in Figure 1, is inspired by
both residual neural networks [11] and autoencoders. The
model is composed of an encoder subnetwork and a decoder
subnetwork; it takes in a vector of 512 speech samples (a
32ms speech window) and outputs another vector of 512
speech samples (the reconstructed window after compression
and decompression). The network is composed of 4 different
types of residual blocks [11], shown in Figure 2. All convolu-
tions use 1D filters of size 9 and PReLU activations [12]; the
upsample block uses subpixel convolutions [13]. (We were
unable to successfully incorporate batch normalization.)

2.1. Softmax Quantization

Quantization – mapping the real-valued output of a neural net-
work into discrete bins – is an essential part of our pipeline.

2521978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

Fig. 1: Simplified network architecture.

However, quantization is inherently non-differentiable, and
therefore incompatible with the standard gradient-descent-
based methods used to train neural networks.

In order to circumvent this, we use a differentiable ap-
proximation first discussed by Agustsson et al. [14]. Specif-
ically, we reframe scalar quantization as nearest-neighbor as-
signment: given a list B of N bins, we quantize a scalar x
by assigning it to the nearest quantization bin. This operation
still isn’t differentiable, but can be approximated as follows:

D = [|x−B1|, ..., |x−BN |] ∈ RN (1)

S = softmax(−σD) (2)

S is a soft assignment over theN quantization bins, which be-
comes a hard assignment as σ →∞ (and can later be rounded
into one). On the decoder side, we can ”dequantize” S back
into a real value Ŝ by taking the dot product of S andB. Since
Agustsson et al. did not give this approximation a name, we
hereby dub it softmax quantization.

In practice, we noticed no problems training with very
high temperature values from the start. For all experiments,
we initialized with σ = 300, making σ and B trainable pa-
rameters of the network. (We also found that scalar quantiza-
tion gave better-sounding results than the vector quantization
more prominently discussed by Agustsson et al.)

2.2. Objective Function

The network’s objective function is as follows:

O(x, y, c) =λmse`2(x, y)

+λperceptualP (x, y)

+λquantizationQ(c)

+λentropyE(c)

(3)

(a) residual

(b) channel change

(c) downsample

(d) upsample

Fig. 2: The four block types used in our network architecture.

where x is the original signal, y is the reconstructed signal, c
is the encoder’s output (the soft assignments to quantization
bins), `2(x, y) is mean-squared error, and λ corresponds to
weights for each loss. P (x, y), Q(c), and E(c) are supple-
mental losses, which we now discuss in more depth.

• Perceptual loss. Training a model solely to minimize
mean-squared error often leads to blurry reconstruc-
tions lacking in high-frequency content [15] [16].
Therefore, we augment our model with a perceptual
loss. We compute MFCCs [17] for both the origi-
nal and reconstructed signals, and use the `2 distance
between MFCC vectors as a proxy for perceptual dis-
tance. To allow for both coarse and fine differentiation,
we use 4 MFCC filterbanks of sizes 8, 16, 32, and 128:

P (x, y) =
1

4

4∑
i=1

`2(Mi(x), Mi(y)) (4)

where Mi is the MFCC function for filterbank i.

• Quantization penalty. Because softmax quantization is
a continuous approximation, it is possible for the net-
work to learn how to generate values outside the in-
tended quantization bins – and it almost always will,

2522

if there is no additional penalty for doing so. There-
fore, we define a loss function favoring soft assign-
ments close to one-hot vectors:

Q(c) =
1

256

255∑
i = 0

[(

N−1∑
j = 0

√
ci,j) − 1.0] (5)

Q(c) is zero when all 256 encoded symbols are one-hot
vectors, and nonzero otherwise.

• Entropy control. We apply entropy coding to the quan-
tized symbols, which provides a simple way to spec-
ify different bitrates without having to engineer entirely
different network architectures for each one. Depend-
ing on our desired bitrate, we can constrain the entropy
of the encoder’s output to be higher or lower (by modi-
fying the loss weight λentropy appropriately).

To estimate the encoder’s entropy, we compute a prob-
ability distribution h specifying how often each quan-
tized symbol appears in the encoder’s output, by aver-
aging all of the soft assignments the encoder generates
over one minibatch. Thus, our entropy estimate is:

E(c) =
∑

h = histogram(c)

−hi log2(hi) (6)

2.3. Training Process

We train the network on samples from the TIMIT speech
corpuzs [18], which contains over 6,000 wideband record-
ings of 630 American English speakers from 8 major dialects.
We create smaller training/validation/test sets from the pre-
existing train/test split: our training set consists of 3,000 files
from the original train set, our validation set consists of 200
files from the original train set, and our test set consists of 500
files from the original test set. Each set contains an even dis-
tribution over the 8 dialects, and they do not share any speak-
ers. Additionally, we preprocess each speech file by maxi-
mizing its volume.

We extract raw speech windows of length 32ms (512
speech samples), with an overlap of 2ms (32 samples), using
a Hann window in the overlap region. This means that each
speech window covers a total of 480 unique samples, or 30ms
of speech. Our training process takes place in two stages:

1. Quantization off. The network is trained without quan-
tization; in this stage, only the `2 and perceptual losses
are enabled. After 5 epochs, the quantization bins are
initialized using K-means clustering, λentropy is set to
an initial value τinitial, and quantization is turned on.
We found that this ”pre-training” period improved the
stability and quality of the network’s output.

2. Quantization on. The network is trained for 145 more
epochs, targeting a specified bitrate. At the end of each

epoch, we evaluate the model’s mean PESQ over our
validation set, and save the best-performing one. We
also estimate the average bitrate of the encoder:

bitrate = (windows/sec) ∗
(symbols/window) ∗
(bits/symbol) bps

=
16000

512− 32
∗ 256 ∗ E(c) bps

(7)

If the estimated bitrate is above the target bitrate region,
then λentropy is increased by a small value τchange; if
it is below the target region, then λentropy is decreased
by τchange. This removes the need to manually find
the optimal λentropy for each target bitrate. (The target
region is defined as our target bitrate ± 0.45kbps.)

During training, we also slowly lower the network’s learn-
ing rate from an initial value αinitial to a final value αfinal,
using cosine annealing [19] [20]. We repeat the training pro-
cess for each bitrate we want to target; for example, if we
want to target 4 different bitrates, we train 4 networks (us-
ing the same architecture, but ending up with different sets
of weights). The training process takes about 20 hours per
network, on a GeForce GTX 1080 Ti.

3. RESULTS

3.1. Objective Quality Evaluation

We evaluated the average PESQ of our speech coder versus
the AMR-WB standard around 4 different target bitrates. The
results are shown in Figure 3, and we reproduce them below:

Dataset AMR-WB DNN
Bitrate PESQ Bitrate PESQ

Training set 8.85 3.478 9.02 3.643
15.85 4.012 16.24 4.123
19.85 4.103 20.06 4.202
23.85 4.138 24.06 4.283

Validation set 8.85 3.674 9.02 3.730
15.85 4.176 16.24 4.225
19.85 4.244 19.70 4.298
23.85 4.290 23.71 4.372

Test set 8.85 3.521 9.02 3.629
15.85 4.063 16.24 4.133
19.85 4.145 20.06 4.215
23.85 4.178 24.06 4.296

Our speech coder outperforms AMR-WB at all bitrates, espe-
cially higher rates. The gap is bigger on the training set than
on the validation or test sets, indicating possible overfitting
(note that we did not use dropout or weight regularization).

2523

(a) training set (b) validation set

(c) test set

Fig. 3: Mean PESQ of our encoder, compared with AMR-WB
at different bitrates.

3.2. Subjective Quality Evaluation

We conducted a simple preference test using Amazon Me-
chanical Turk. 20 speech files were randomly selected from
the test set and processed with both AMR-WB and our
method, at the same 4 target bitrates as before. Then, 20
listeners were presented the original speech signal plus both
processed versions (unlabeled and randomly switched). Each
listener was asked to pick which of the two he or she pre-
ferred. The subjects’ average preferences are recorded below:

Target Bitrate DNN No Preference AMR-WB
9kbps 25.50% 32.00% 42.50%

16kbps 24.50% 37.00% 38.50%
20kbps 23.50% 41.75% 34.75%
24kbps 23.75% 39.00% 37.25%

Overall, the subjects slightly preferred AMR-WB to our
DNN-based coder, with the gap narrowing at higher bitrates.
This indicates that more work needs to be done in order to
increase our model’s subjective quality.

3.3. Computational Complexity

We evaluated the average time our model takes to encode
and decode one 30ms window, on an Intel i7-4970K CPU
(3.8GhZ) and a GeForce GTX 1080 Ti GPU:

Processor Encoder Decoder Total
CPU 10.52ms 10.90ms 21.42ms
GPU 2.43ms 2.35ms 4.78ms

Our speech coder runs in realtime (under 30ms for combined
encode and decode) without any optimizations beyond those
already provided by TensorFlow and Keras. However, it’s im-
portant to note that real speech coders will need to run on
processors much slower than the CPU we used.

4. CONCLUSION

We have shown a proof-of-concept applying deep neural net-
works (DNNs) to speech coding, with very promising results.
Our wideband speech coder is learned end-to-end from raw
signal, with almost no audio-specific processing aside from a
relatively simple perceptual loss; nevertheless, it manages to
compete with current standards.

The key to further increasing quality probably lies in our
perceptual model, which could be significantly more complex
and nuanced. This is where psychoacoustic theory can come
into the picture once again: to develop a differentiable percep-
tual loss for this and other audio processing tasks. In addition,
expanding the training data to include music and background
noise instead of solely clean speech may be fruitful.

Finally, while our DNN-based coder already runs in real-
time on a modern desktop CPU, it’s still a far cry from run-
ning on embedded systems or cellphones. Model compres-
sion, transfer learning, and clever architecture designs are all
interesting areas which could be explored here.

5. HYPERPARAMETERS

For purposes of reproducibility, we now make available the
list of parameters used for all experiments:

σinitial 300
αinitial 0.025
αfinal 0.01

λperceptual 5.0
λquantization 10.0

λmse 30.0
τinitial 0.5
τchange 0.025
N 32

Batch size 128
Optimizer Adam

The parameters are listed in roughly descending order by
how much manual tuning they required. Source code will be
made public after the reviewers’ decision. Speech samples
are available at: http://srik.tk/speech-coding

6. REFERENCES

[1] Bruno Bessette, Redwan Salami, Roch Lefebvre, Mi-
lan Jelinek, Jani Rotola-Pukkila, Janne Vainio, Hannu
Mikkola, and Kari Jarvinen, “The adaptive multirate

2524

wideband speech codec (amr-wb),” IEEE transactions
on speech and audio processing, vol. 10, no. 8, pp. 620–
636, 2002.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton,
“Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, 2015.

[3] Robert D Dony and Simon Haykin, “Neural network
approaches to image compression,” Proceedings of the
IEEE, vol. 83, no. 2, pp. 288–303, 1995.

[4] Ashok K. Krishnamurthy, Stanley C. Ahalt, Douglas E.
Melton, and Prakoon Chen, “Neural networks for vec-
tor quantization of speech and images,” IEEE journal
on selected areas in Communications, vol. 8, no. 8, pp.
1449–1457, 1990.

[5] Lizhong Wu, Mahesan Niranjan, and Frank Fallside,
“Fully vector-quantized neural network-based code-
excited nonlinear predictive speech coding,” IEEE
transactions on speech and audio processing, vol. 2, no.
4, pp. 482–489, 1994.

[6] Milos Cernak, Blaise Potard, and Philip N Garner,
“Phonological vocoding using artificial neural net-
works,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on.
IEEE, 2015, pp. 4844–4848.

[7] Shigeo Morishima, H Harashima, and Y Katayama,
“Speech coding based on a multi-layer neural network,”
in Communications, 1990. ICC’90, Including Super-
comm Technical Sessions. SUPERCOMM/ICC’90. Con-
ference Record., IEEE International Conference on.
IEEE, 1990, pp. 429–433.

[8] Milos Cernak, Alexandros Lazaridis, Afsaneh Asaei,
and Philip N Garner, “Composition of deep and spik-
ing neural networks for very low bit rate speech cod-
ing,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 24, no. 12, pp. 2301–2312,
2016.

[9] J Jiang, “Image compression with neural networks–a
survey,” Signal Processing: Image Communication, vol.
14, no. 9, pp. 737–760, 1999.

[10] George Toderici, Damien Vincent, Nick Johnston,
Sung Jin Hwang, David Minnen, Joel Shor, and
Michele Covell, “Full resolution image compres-
sion with recurrent neural networks,” arXiv preprint
arXiv:1608.05148, 2016.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2016, pp. 770–778.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Pro-
ceedings of the IEEE international conference on com-
puter vision, 2015, pp. 1026–1034.

[13] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes
Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert,
and Zehan Wang, “Real-time single image and video
super-resolution using an efficient sub-pixel convolu-
tional neural network,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
2016, pp. 1874–1883.

[14] Eirikur Agustsson, Fabian Mentzer, Michael Tschan-
nen, Lukas Cavigelli, Radu Timofte, Luca Benini, and
Luc Van Gool, “Soft-to-hard vector quantization for
end-to-end learned compression of images and neural
networks,” arXiv preprint arXiv:1704.00648, 2017.

[15] Michael Mathieu, Camille Couprie, and Yann LeCun,
“Deep multi-scale video prediction beyond mean square
error,” arXiv preprint arXiv:1511.05440, 2015.

[16] Alexey Dosovitskiy and Thomas Brox, “Generating im-
ages with perceptual similarity metrics based on deep
networks,” in Advances in Neural Information Process-
ing Systems, 2016, pp. 658–666.

[17] Lindasalwa Muda, Mumtaj Begam, and Irraivan Elam-
vazuthi, “Voice recognition algorithms using mel
frequency cepstral coefficient (mfcc) and dynamic
time warping (dtw) techniques,” arXiv preprint
arXiv:1003.4083, 2010.

[18] John S Garofolo, Lori F Lamel, William M Fisher,
Jonathan G Fiscus, David S Pallett, Nancy L Dahlgren,
and Victor Zue, “Timit acoustic-phonetic continuous
speech corpus,” Linguistic data consortium, vol. 10, no.
5, pp. 0, 1993.

[19] Ilya Loshchilov and Frank Hutter, “Sgdr: stochas-
tic gradient descent with restarts,” arXiv preprint
arXiv:1608.03983, 2016.

[20] Xavier Gastaldi, “Shake-shake regularization,” arXiv
preprint arXiv:1705.07485, 2017.

2525

