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ABSTRACT

Speaker diarization (detecting who-spoke-when using relative
identity labels) and speaker recognition (detecting absolute
identity labels without timing) are different but related tasks
that often need to be completed simultaneously in many sce-
narios. Traditional methods, however, address them indepen-
dently. In this paper, we propose a method to jointly diarize
and recognize speakers from a collection of conversations.
This method benefits from the sparsity and temporal smooth-
ness of speakers within a conversation and the large-scale tim-
bre modeling across recordings and speakers. Specifically, we
employ one convolutional neural network (CNN) to perform
segment-level speaker classification and another CNN to de-
tect the probability of speaker change within a conversation.
We then concatenate the output of both CNNs and feed it into
a recurrent neural network (RNN) for joint speaker diariza-
tion and recognition. Experiments on different datasets show
promising performance of our proposed approach.

Index Terms— Speaker diarization, speaker recogni-
tion, convolutional neural network, recurrent neural network,
speak change detection

1. INTRODUCTION

Speaker recognition aims to recognize the identity of a
speaker from his/her utterances, yet the time boundaries of
such utterances do not need to be detected. Speaker diariza-
tion, on the other hand, aims to detect “who spoke when”
during a conversation, yet speaker identities can be relative
within the conversation (e.g., Speaker No. 1 vs. John Smith).
In many scenarios, however, speaker recognition and speaker
diarization are both needed. Take the call center as an ex-
ample, it may want to recognize a caller’s identity and other
paralinguistic parameters (e.g., emotion) from the caller’s
speech so that it can quickly direct the caller to a special-
ized agent to improve the caller’s satisfaction. In this case,
the call center would need a system that is able to diarize
the conversation between the caller and the initial agent and
recognize the caller’s identity against a pretrained model.
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Therefore, jointly diarizing a conversation and recognizing
the identity of conversational partners is an interesting and
useful problem to investigate.

One naive way to achieve joint speaker diarization and
recognition in a conversation is to segment the conversation
into short segments and recognize the speaker(s) (if any) in
each segment independently. This, however, does not fully
exploit the many useful properties of the problem, which
allow the two tasks to benefit each other. On one hand,
speaker diarization helps speaker recognition. First, within
a conversation, the identity of an active speaker is likely to
be stationary within a short period of time; this is a property
that speaker diarization techniques often exploit (e.g., speaker
change detection [1]), and can help smooth speaker recogni-
tion results. Second, within a conversation, there are usually
only a few speakers, i.e., the identity of an active speaker at a
moment can only come from a small set of people of a large
identity database; this can help reduce the search space of
speaker recognition significantly. On the other hand, speaker
recognition techniques explicitly or implicitly learn speaker
models from many recordings of many different speakers.
This cross-speaker, cross-context learning helps the speaker
models to capture highly discriminative features of speech.
When they are applied to speaker diarization, the clustering of
the same speaker within a conversation can also be benefited.

In this paper, we develop a method to jointly diarize and
recognize speakers from a set of conversations. It not only
estimates the time boundaries of utterances of each speaker,
but also recognizes the absolute identity of a set of speakers
of interest, provided that training speech of these speakers are
available. Our method exploits the unique properties of the
problem and allows the two tasks to benefit each other.

Specifically, we first use one Convolutional Neural Net-
work (CNN), called CNN1, to classify the absolute speaker
identity of the set of speakers of interest on equally spaced
segments of each conversation. CNN was first introduced in
[2] and has been successfully used in image classification and
audio recognition [3, 4, 5]. We incorporate a sparsity term in
the loss function to account for the fact that only a few speak-
ers are present in each conversation. We then use another
CNN, called CNN2, to perform Speaker Change Detection
(SCD) on each conversation to model the temporal continu-
ity of speaker identities, where we design a loss function to
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bias towards false alarms. Finally we concatenate the outputs
of both CNNs and feed it into a Recurrent Neural Network
(RNN) for joint speaker recognition and diarization. Through
the RNN, the CNN1 discriminative features and CNN2 tem-
poral continuity information can be integrated together.

2. RELATED WORKS

Many recent advances adopt i-vector extraction [6, 7, 8] for
speaker diarization followed by a probabilistic linear discrim-
inant analysis (PLDA) based scoring function [9] to cluster
speakers. However, due to the clustering performance relying
on the size of segments, such systems could not work well for
short segment processing. Also, feature embedding was pro-
posed to embed the speech utterance into a pre-defined anchor
space [10]. Deep neural networks can also be used to create
speaker embeddings [11]. However, most speaker diarization
systems work for relative label identification. In this paper,
we propose to not only estimate the time boundaries of the
utterances of each speaker, but also identify the speaker’s ab-
solute identity. We further improve our predicted result with
Speaker Change Detection (SCD), which determines the spe-
cific time of speaker change. A common way [8] is calculat-
ing the distance between two sliding windows’ contents, us-
ing Kullback-Leibler divergence [12] and Generalized Likeli-
hood Ratio as distance metrics. Deep Neural Network (DNN)
was also applied in [13], where pre-computed features that
contain information about each segment were fed as input
to the DNN. Using CNN to detect speaker change has been
introduced by [14], in which a conversation is divided into
consecutive windows with overlaps and a regression task is
performed to predict the speaker change probability between
0 and 1 in each window. In this paper, we further exploited
this model for our work.

3. PROPOSED APPROACH

The overall structure of our proposed method is shown in Fig-
ure 1. It has two CNNs for segment-level speaker identity
classification and Speaker Change Detection (SCD), respec-
tively. Then it is followed by an RNN to integrate the infor-
mation of classification and SCD together, to generate a more
robust speaker identity prediction for each segment.

3.1. CNN1 for Segment-Level Speaker Classification

CNN1 is used to classify recording a spectral segment into
a certain speaker identity. The input to CNN1 is a log-mel
spectrogram of 0.2 second long (26 frames) with no overlap,
with 39 frequency bands covering 0 to 4000 Hz. The STFT
frame and hop size are 16 ms and 8 ms.

As shown in Figure 2, each segment corresponds to a label
from 0 to N (positive integer), where 0 denotes silence and 1
to N denotes the N possible speakers.

Fig. 1. The overall structure of our proposed method.

Fig. 2. Recording track segmentation and data preparation.
It shows how we separately use different information of the
same conversation segment to train CNN1 and CNN2.

In Figure 3, CNN1 consists of 4 convolutional layers and
every two convolutional layers are followed by a max pooling
layer. For each convolutional layer, zero padding and Batch
Normalization (BN) [15] are adopted with Rectified Linear
Unit (ReLU) activation. Every fully connected layer has a
dropout rate of 0.5 to avoid over fitting [16]. Softmax activa-
tion is used in the output layer to generate N +1 dimensional
probabilistic output.

Theoretically, CNN1 output could have various speaker
identity combinations. However, it is reasonable to assume
only limited amount of speakers per recording (e.g., 2 speak-
ers) and CNN1 should present sparse output pattern. So we
design the CNN1 loss function with sparsity constraint as:

loss = ytrue × log(ypred) +
√
ypred, (1)

where the first term is cross-entropy [17] and the second term
is an L-0.5 norm regularizer to force the output layer predic-
tion to be sparse. Stochastic Gradient Descent (SGD) is used
as the optimizer and the learning rate is 0.01.

3.2. CNN2 for Speaker Change Detection

CNN2 estimates the speaker change probabilities as a regres-
sion task. Following [14] with some modifications. The input
to CNN2 is a log-mel spectrogram of 1.4 second long (141
frames) and a hop of 200 ms, with 128 frequency bands cov-
ering 0 to 4000 Hz. The STFT frame and hop size are 64
ms and 10 ms. Predictions are made on spectrograms of this

2497



Convolution1

Convolution2

Convolution3

Convolution4

Max Pooling1

Max Pooling2

Fully Connected1

Fully Connected2

CNN1 parameters:
Conv1: 64 units, receptive field: 3*3, 

stride: 1*1, ReLU activation
Conv2: 64 units, receptive field: 3*3, 

stride: 1*1, ReLU activation
Pool1: pool size: 2*2, stride: 2*2  
Conv3: 64 units 3*3, stride:1*1, ReLU

activation
Conv3: 64 units  3*3, stride:1*1, ReLU

activation
Pool2: pool size: 2*2, stride: 2*2
FC1: 2048 units, ReLU activation
FC2: 101 units, Softmax activation
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CNN2 parameters:
Conv1: 48 units, receptive field: 5*5, 

stride: 2*2, ReLU activation
Pool1: pool size: 2*2, stride: 2*2  
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RNN: Output

Fig. 3. Our proposed model: CNN1 + CNN2 + RNN. Param-
eters are for the CALLHOME experiment. Layer sizes are
reduced to 1/8 for the prisoner dataset.

size, for every 200 ms throughout a recording. Such setting
guarantees synchronized time steps for CNN1 and CNN2.

For annotations, we adopt the triangle-shaped soft bound-
aries, which has values between 0 and 1, indicating speaker
change probabilities described in [14]. Speaker change point
is defined as the moment when a certain speaker starts or stops
speaking activity. As shown in Figure 2, for each speaker
change point, there is a tolerance of 0.6 seconds. For each
1.4-second long window, we denote the center of the win-
dows as tmid and the nearest speaker change time as tSCD,
and the label of each window can be represented as:

label = max

{
0,

5

3
× (0.6− |(tmid − tSCD)|)

}
. (2)

In Figure 3, the output layer of CNN2 has only one node
with sigmoid activation to generate an output value in (0, 1).
We define a new loss function as:

loss = (0.1 + ytrue)× (ytrue − ypred)
2, (3)

which allows windows with larger ground-truth label val-
ues to have larger weights. This makes CNN2 detect more
speaker change points but prone to false alarms. SGD is used
as the optimizer and the learning rate is 0.01.

3.3. RNN for Combining Results Together

In Figure 3, after obtaining the predicted classification and
SCD results, they are concatenated and fed into the RNN,
which further refines the speaker classification results. We
employ two LSTM layers [18] with 128 units and tanh ac-
tivation, each followed by a time-distributed fully connected

layer. Softmax activation is adopted for the output layer. We
choose categorical cross-entropy as the loss function, RM-
Sprop as the optimizer, and the learning rate is 0.001.

4. EXPERIMENTAL RESULTS

4.1. Datasets

We first adopt the CALLHOME American English Speech
dataset, where 50 conversation recording tracks are used [19].
Each recording has two distinct speakers, so there are 100 dif-
ferent speakers in total. For all recordings, the first 30%, the
following 20%, and the rest 50% length of the whole record-
ing, contribute to three subsets denoted as Dtrainc

, Dtrainr
,

and Dtest, respectively. Dtrainc is used to train both CNN1
and CNN2. Dtrainr is used to train the RNN, by feeding the
CNN1 and CNN2 predictions on it to the RNN. Dtest is used
for testing these trained models.

Then, we use another prison dataset that contains two-side
telephone conversation recordings between a prisoner and an
external partner. In total there are 10 prisoners and each pris-
oner has 10 recordings. The same external partner may ap-
pear in several recordings of each prisoner, yet only the pris-
oners’ identities are included in the ground-truth, not the ex-
ternal partners. The dataset also contains the prisoner-side
only recordings of these conversations, where the external
partner’s voice is greatly attenuated. We use an energy-based
method from pyAudioAnalysis [20] to generate speaker di-
arization annotations. Specifically, we first denote speaker ac-
tivities (starting time and ending time) from two-side record-
ings by energy detection, then follow the same step for the
prisoner-side recordings. By subtracting the annotations of
the two recordings, the external partner’s activities can also
be annotated. Finally, we manually checked the annotations
and corrected minor errors.

As we do not have the ground-truth identity of the external
speakers, we simply treat all of them across all recordings as
a single Universal Background Class (UBC). This is in fact a
more practical setup in real scenarios. For each prisoner, the
first 3 out of the 10 recordings are used to train CNN1. We do
not use them to train CNN2, but directly use the pre-trained
CNN2 from the CALLHOME dataset. This is to verify our
assumption that SCD is less related to the actual identify of
speakers. The next 2 recordings of each prisoner are used to
train the RNN, by feeding the cNN1 and CNN2 predictions
to the RNN; the rest 5 recordings are used for testing.

4.2. CNN1 Restricted to Ground Truth Identities

As CNN-based models are widely used in speaker diarization
in recent years [11, 13, 14], to benchmark the performance of
our proposed approach, we further constructed another CNN-
based segment-level speaker classification method for diariza-
tion on the CALLHOME dataset. Differently, however, we
provide oracle side information to this CNN. Specifically, we

2498



Table 1. Predicted accuracy (mean ± std) comparisons.

Method Acc.

(1) CNN1 w/ cross-entropy loss 0.711 ± 0.019
(2) CNN1 w/ sparsity constraint loss 0.741 ± 0.009

(3) CNN1 in (2) + all zeros SCD 0.743 ± 0.008
(4) CNN1 in (2) + predicted SCD 0.829 ± 0.004

(5) CNN1 in (2) + GT SCD 0.867 ± 0.003

(6) CNN1 restricted to GT identities 0.847 ± 0.007

use CNN1 with the sparsity term in the loss function to pre-
dict speaker identity within each segment of a conversation,
but instead of making predictions across all of the 101 classes,
the predictions are restricted to the 3 classes of the ground-
truth speakers in the conversation plus the silence. Note that
this speaker information is not available in many application
scenarios and is not made available to our proposed methods.

4.3. CALLHOME Dataset Result

We train the model on the CALLHOME dataset for 10 times
with different initializations. In Table 1, we compare the av-
eraged predicting accuracies by using (1) cross-entropy as
the loss function, (2) our proposed loss function with spar-
sity constraint, (3) integrating sparsity constraint CNN1 with
all zeros SCD using RNN, (4) integrating sparsity constraint
CNN1 with predicted SCD using RNN, (5) integrating spar-
sity constraint CNN1 with ground truth SCD using RNN, and
(6) CNN1 restricted to ground truth identities. In (3), (4), and
(5), RNN serves as the purpose of integrating identity classi-
fication and SCD information together.

First, the newly proposed loss function with sparsity con-
straint not only improves the prediction accuracy but also
makes the results more stable with smaller std value, while
we notice that the model is occasionally trapped to a local
minimum when using cross-entropy as the loss function.
Second, integrating CNN1 and CNN2 results significantly
improves the classification performance. Compared with (2)
that adopts sparsity loss function only , we achieved relatively
11.9% improvement of accuracy in (4), indicating that the
temporal continuity information of speakers provided by the
SCD result is very helpful for speaker classification. Third,
precise SCD is the key for final classification performance
improvement. By integrating CNN1 prediction with artificial
all-zeros, CNN2 predicted SCD, and ground truth SCD, we
observe the trend of increasing RNN classification accuracy.
Fourth, the result of our proposed method in (4) is quite close
to (6), a method which is only useful when there is specific
information to significantly decrease the possible range of
every test sample. On the contrary, our proposed method is
much more practical since it does not need any additional
information but can achieve almost the same accuracy as (6).

Table 2. Precision and recall for 10 prisoners.

ID Pre. Rec. ID Pre. Rec.

1 0.921 0.776 6 0.933 0.832
2 0.767 0.836 7 0.235 0.006
3 0.796 0.837 8 0.941 0.753
4 0.786 0.838 9 0.743 0.777
5 0.899 0.830 10 0.370 0.607

4.4. Prison Dataset Result

We use the same method as CALLHOME dataset except that
CNN2 model is trained on the CALLHOME data for SCD.
As speaker change detection model learns the speaking be-
haviors, patterns, styles, etc. across different speakers, we
assume that this model can generalize well to the new prison
dataset. RNN works for a 12 classes classification (10 pris-
oners + 1 universal other speaker + silence), so the input of
RNN is a 12-dimensional vector including the SCD result.
We reduce the number of neurons in every layer to be 1/8 of
the given structure in Figure 3 to avoid overfitting. Since we
only care about the diarization and recognition of the prisoner
but not the external partner, this is essentially an information
retrieval task. Hence precision and recall are used.

Experimental results for each prisoner are listed in Ta-
ble 2. First, Performances in most prisoner recordings are
consistent. The average precision (0.739) and recall (0.709)
suggests that our proposed system works well on the prison
dataset. Second, it also can be inferred that SCD informa-
tion does apply from one dataset to another. It supports our
assumption that SCD is more related to the natural conver-
sation patterns, other than the identity of specific speakers.
Third, performance from No. 7 and No. 10 prisoners are low,
especially for the recall of No. 7 prisoner. By listening to
these corresponding recordings, we find that some external
partners share very similar timber with the prisoner. In some
recordings more than two speakers appear in the conversation.
Background music and babble noise are often present in the
recordings. All of these factors form the likely reasons of the
poor performance on these recordings.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a joint speaker diarization and
recognition system using two CNNs and one RNN. We used
CNN1 to classify the absolute speaker identity, and CNN2 to
perform speaker change detection. Outputs from both CNNs
are fed into an RNN for joint speaker diarization and recog-
nition. Experiments show that our approach achieves satisfy-
ing speaker diarization and recognition results, which is com-
parable with the extremely powerful but unpractical method:
CNN1 restricted to ground truth identities. It also shows that
SCD plays an important role in the final RNN prediction.
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