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ABSTRACT

In this paper, we introduce the concept of Eventness for au-
dio event detection, which can, in part, be thought of as an
analogue to Objectness from computer vision. The key ob-
servation behind the eventness concept is that audio events
reveal themselves as 2-dimensional time-frequency patterns
with specific textures and geometric structures in spectro-
grams. These time-frequency patterns can then be viewed
analogously to objects occurring in natural images (with the
exception that scaling and rotation invariance properties do
not apply). With this key observation in mind, we pose the
problem of detecting monophonic or polyphonic audio events
as an equivalent visual object(s) detection problem under
partial occlusion and clutter in spectrograms. We adapt a
state-of-the-art visual object detection model to evaluate the
audio event detection task on publicly available datasets. The
proposed network has comparable results with a state-of-the-
art baseline and is more robust on minority events. Provided
large-scale datasets, we hope that our proposed conceptual
model of eventness will be beneficial to the audio signal pro-
cessing community towards improving performance of audio
event detection.

Index Terms— eventness, audio event detection, region
proposal, time-frequency analysis

1. INTRODUCTION

Recently, objectness-based deep learning networks using re-
gion proposals have achieved state-of-the-art performance in
natural object detection tasks [1, 2, 3, 4]. In [1], a dramatic
improvement in object detection was achieved when feeding a
convolutional neural network (CNN) with class-agnostic ob-
jectness region proposals. This was later extend to a so-called
MultiBox model [2], which integrated the objectness region
proposal component into a deep neural network further im-
proving performance.

One drawback of these methods, however, is the large
number of parameters utilized for different features of the
region proposals causing a dramatic decrease in processing
speed. Ren et al. [3] overcame this decrease in process-
ing speed by implementing a so-called Faster R-CNN which
shares the feature map between the objectness region proposal

and the object classifier. This unification was shown to not
only increase the processing speed but also improve perfor-
mance.

Audio event detection has recently been investigated from
a similar computer vision perspective that exploits the effec-
tiveness of deep CNNs [5, 6]. In order to exploit vision in-
spired CNNs for audio event detection, the audio signal is
usually converted to a 2D time-frequency representation, or
spectrogram. By using multiple convolutional layers [6] or
multiple convolutional groups [5], these computer vision in-
spired CNNs have become state-of-the-art in terms of perfor-
mance for both event detection and classification.

In this paper, we borrow from the concept of Object-
ness and propose a similar analogue for audio signals termed
Eventness. When represented in the time-frequency domain,
audio events reveal themselves as 2D patterns in spectro-
grams, where each event has a specific geometric structure.
These geometric structures then provide information on how
the frequencies that comprise the audio event vary with time.
The patterns in the spectrograms can then be thought of
synonymously to objects occurring in natural images. We
therefore look to leverage a number of components from
objectness-based deep learning and harness them for temporal
localization (detection) of audio events from spectrograms1.

For our proposed eventness model, we adapt a state-of-
the-art object detection network, namely a Faster R-CNN, for
audio event detection. Audio signals are first converted into
spectrograms and a linear intensity mapping is used to sepa-
rate the spectrogram into 3 distinct channels. A pre-trained
vision based CNN is then used to extract feature maps from
the spectrograms, which are then fed into the Faster R-CNN.
It should be noted that while the feature maps produced by the
pre-trained vision based CNN aim to detect objects in natu-
ral images, they can also be employed in a similar fashion to
detect 2D patterns that are present in spectrograms.

To the best of our knowledge, this is the first time au-
dio event detection, or temporal localization, has been ap-
proached from a vision-inspired angle, i.e., objectness in au-
dio spectrograms. Compared to other CNN based audio event
detection models, ours differs in at least two aspects. First,
we propose the regions of events directly instead of infer-

1We note that the same rotation and scale invariance properties of natural
images do necessarily translate to the audio domain.
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Fig. 1: The envisaged eventness model.

ring these values based on: the concatenation of heuristics via
merging same-class neighbors [7] [8], performing sequence
labeling using HMM and Viterbi algorithms [9] [10], or es-
timating the distance between the current time and the onset
and offset of the event [11]. Second, previous models use
small temporal windows, typically between 25ms − 100ms,
[7, 8, 9, 10, 11] which may not capture complete non-speech
events [12]. Therefore we use large temporals windows on
the order of seconds or tens of seconds.

We evaluate the model on publicly available datasets,
namely the UrbanSound8k [13] and the 2017 Detection and
Classification of Acoustic Scenes and Events (DCASE)[14]
both qualitatively and quantitatively. In the qualitative anal-
ysis we examine the ability of the proposed model to exploit
both temporal and spectral content for region proposals, even
for overlapping events. In the quantitative analysis, we com-
pare both the proposed model and state-of-the-art baseline
showing that comparable performance is achieved along with
a robustness to infrequent events.

2. THE EVENTNESS MODEL

Figure 1 shows the envisaged model where audio signals are
first converted into log-scaled mel-spectrogams. A feature
map is then created by passing the log-scaled mel- spec-
trogram through a pre-trained CNN based on the VGG-16
model. This feature map is then fed to a Faster R-CNN
consisting of two main components: an RPN and an event
classifier, which will be described in Section 2.2 and 2.3
respectively. It should be noted that the RPN and event
classifier then use the same resulting feature map from the
output of the pre-trained VGG-16 CNN to generate the region
proposals and classify the audio event.

Fig. 2: Objectness proposals in an natural image (left) and
audio eventness proposals in a spectrogram image (right).

2.1. Spectrogram and feature map generation

The raw audio signals are first segmented into long time
windows of length T and converted to log-scaled mel-
spectrograms. The resulting log-scaled mel-spectrograms
are then normalized in the range [0,1] and a linear inten-
sity segment mapping is used to separate the the original
spectrogram into 3 distinct channels. We note that this map-
ping is the same process used to map greyscale image to a
higher dimensional space, i.e., a colormap, which in [15] was
shown to outperform single channel inputs of CNN based
audio event classifiers. Other mappings have been proposed
based on both the first- and second-order differences of the
log-scaled mel-spectrograms, the so-called delta and delta-
delta coefficients [5, 6]. However, in our experiments, the
previously described linear intensity segment mappings have
shown better performance.

The linear intensity segment mapping effectively quan-
tizes the original spectrogram based on the spectral intensi-
ties, where strong spectral values will be more prominent in
one channel while weak spectral values will be prominent in
another. We hypothesize that the subtle shapes introduced by
this mapping can be better exploited in the convolutional lay-
ers in the network. The resultant 3-channel spectrogram map-
ping was then fed into a pre-trained VGG-16 CNN to pro-
duce a feature map. Only the convolutional layers are used
from the pre-trained VGG-16 CNN, i.e., we discard the fully
connected and classification layers.

2.2. Regional Proposal Network (RPN)

The RPN in the proposed model uses anchors to generate
multiple region proposals based on the output feature map
of the pre-trained VGG-16 CNN. In particular, at each loca-
tion of the feature map, the RPN will generate multiple re-
gion proposals at different scales and aspect ratios. The intu-
ition behind using this anchor approach is that an estimate of a
complete object can be inferred even under partial observation
or occlusion, e.g., in the left image of Figure 2 even though
the bus is occluded by pedestrians, the RPN still generates a
full proposal over the entire bus. This can then directly be
translated to overlapping audio events in both the time and
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frequency domain. Furthermore, the anchors from the RPN
will generate eventness proposals using both the temporal and
spectral content as shown in the right image of Figure 2.

2.3. Event Classifier

The event classifier employs a Region of Interest (RoI) pool-
ing layer [16] to extract and normalize region proposals from
the RPN. The RoI pooling layer performs a similar operation
to a conventional max-pooling layer, except that it can take
inputs of non-uniform sizes to obtain fixed-size feature maps.

By focusing only on the region proposals provided by the
RPN, the classifier can ignore other noisy (unimportant) areas
of the feature map. Besides classifying the audio event, this
component also refines the region bounding box. The allows
for a more accurate bounding box which is derived from a
larger view of the event instead of only one location in the
feature map. The event classifier then uses a final softmax
layer to predict the audio event.

3. EXPERIMENT AND RESULTS

3.1. Datasets and Performance Metrics

From a given audio file, large audio segments (T = 15s from
the UrbanSound8K dataset and T = 10s from the DCASE
2017 dataset) were first extracted. 128-band log-scaled mel-
spectrograms were generated from the audio segments with a
window size of 2048 and hop length is 1024. Feature maps
were then generated as described in Section 2.1 and fed to the
the RPN and classifier. The RPN then used 9 anchors at each
location on the feature map to generate multiple eventness
proposals.

The performance metrics are used on either a segment
based or event based level [14]. The segment-based met-
rics, F1,SB score and error rate denoted as ERSB , are used to
compare the predicted events to the ground truth labels of seg-
ments that are one second long. The same metrics are applied
for event-based metrics, F1,EB score and error rate denoted
as EREB , which compare the amount of overlap between the
predicted event and the ground truth labels. The definitions of
the error rates are as follow:

ERSB =
max(Nref , Nsys)− TP

Nref

EREB =
FN + FP

Nref

where Nref is total number of predicted events, Nsys is total
number ground truths events, and TP , FP , and FN are the
number of true positives, false positive, and false negatives
respectively.

M
el

-b
an

d
Fr

eq
ue

nc
ie

s

Time

0 15
0

128

(a) 0 15(b) 0 15(c)

0 15
0

128

(d) 0 15(e) 0 15(f)

0 15
0

128

(g) 0 15(h) 0 15(i)

Fig. 3: Region proposals of several audio events for (a) siren,
(b) car horn , (c) gun shot, (d) jackhammer, (e) dog bark, (f)
car horn with dog bark, (g) gun shot with dog bark, (h) dog
bark with siren, (i) dog bark with dog bark.

3.2. Qualitative Evaluation

We perform a qualitative analysis of the proposed model
on the UrbanSound8K dataset which consists of more than
8000 audio clips comprised of 10 classes. We select 5 target
classes having good performance in a pilot experiment out of
10 classes, specifically: car horn, dog bark, gunshot, siren,
and jackhammer. We then randomly embed one or two events
from these classes with background noise from the DCASE
2016 (task 3) [17] dataset which is meant to mimic multi-
source conditions. This produced, in total, 5000 training clips
and 3000 testing clips, with 30% being polyphonic.

Figure 3 shows 5 monophonic spectrograms, i.e. siren
(a), car horn (b), gun shot (c), jackhammer (d), and dog bark
(e), and 4 polyphonic spectrograms, i.e. car horn-dog bark
(f), gun shot-dog bark (g), dog bark-siren (h), and dog bark-
dog bark (i). The Figure also has an overlay of the region
proposals where the areas surrounded by the green boxes are
the ground truth labels and the areas surrounded by red boxes
are the predicted labels. The darker the shade of red indicates
a higher confidence level of the prediction.

In general, the region proposals are able to capture the
audio events with a very fine temporal resolution. In Fig-
ure 3 (a), besides correctly identifying the siren audio event,
the eventness model surprisingly detected another audio event
that was erroneously omitted from the ground truth labels.
Furthermore in Figure 3 (g) the eventness model detects an
audio event that is corrupted by noise and again erroneously
omitted from the ground truth labels.

In Figure 3 (h), the eventness model detects events with
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Table 1: Performance of the eventness model on the Urban-
Sound8K dataset.

Metric Car horn Dog bark Gun shot Jackhammer Siren Overall
F1,EB 0.86 0.61 0.79 0.75 0.55 0.71
EREB 0.27 0.81 0.40 0.52 0.70 0.54

different temporal lengths, i.e., the dog bark event is shorter
than the siren event and can differentiate between partially
overlapping events. Furthermore, the proposed model also
provides region proposals based on the spectral content, as
noticed by their sizes in along the frequency axis, i.e., the
vertical size of the bounding box is different for each unique
event.

In Figure 3 (i), the same audio event occurs with some
overlap. Remarkably, the eventness model extrapolates this
as a single event. This is a direct result of using larger tempo-
ral windows as the eventness model has a larger global view
when compared to other work using smaller temporal win-
dows.

3.3. Quantitative Evaluation

We quantitatively evaluate the eventness model on the Urban-
Sound8k dataset as described in Section 3.2 and the DCASE
2017 task 3 dataset. The DCASE dataset is pre-divided into
4 folds, where we select the first fold for testing and synthe-
size 10s audio clips from the remaining folds which contain
11,260 clips in total)2. Synthesized clips are generated by ran-
domly assigning one or two annotated events with the back-
ground noise (audio portion having no ground truth annota-
tions) from the DCASE 2017. Even when we select an event
to synthesize, the selected event is usually overlapped with
some other events due to the natural recording environment.
Audio clips in the test set are kept unchanged.

Table 1 shows both the F1,EB and EREB for the Urban-
Sound8k dataset. We see that the eventness model has a high
F1 score, meaning it has both good recall and precision and a
low error rate.

Table 2 shows the performance of the proposed event-
ness model and the baseline model provided by DCASE 2017
which utilizes a 2 layer neural network with small temporal
windows, T = 40ms. It can be seen that the eventness model
outperforms the baseline in event-based metrics but not in
segment-based metrics. This is due to the eventness model fo-
cusing on larger temporal segments which capture the entire
event whereas the baseline leverages smaller temporal seg-
ments which are better suited for segment-based tasks.

Interestingly, the eventness model exhibits more robust-
ness to infrequent events when compared to the baseline
model. The third event class, children is the least frequent

2Even though evaluation was performed on a single fold, we expect that
performing 4 fold cross validation result would not significantly impact the
accuracy.

Table 2: Performance on DCASE 2017. The reported num-
bers are in the following format ER and (F1)

Event class Segment-based Event-based
Baseline Eventness Baseline Eventness

Brakes squeaking 1(0) 0.97(0.29) 1(0) 1.75(0)
Car 0.86(0.69) 1.12(0.61) 2.66(0.05) 1.55(0.04)
Children 5.45(0) 1.86(0) 13(0) 2.18(0)
Large vehicle 1.15(0.31) 1.36(0.28) 5.92(0.03) 3.31(0)
People speaking 1.34(0.03) 1.01(0.10) 3.47(0) 1.2(0.08)
People walking 1.07(0.28) 1.08(0.25) 3.88(0.04) 1.81(0.03)
Overall 0.95(0.45) 1.02(0.42) 3.53(0.03) 1.78(0.03)

classes in the dataset and the error rate using the eventness
model has superior performance, although both models have
similar F1 scores.

4. CONCLUSIONS AND FUTURE WORK

We proposed the concept of eventness for audio events de-
tection by utilizing a vision inspired CNN. Sharing similar
characteristics with its vision based counterpart objectness in
natural object detection, eventness can leverage components
from natural object detection to detect audio events present
in spectrograms. We evaluated a Faster R-CNN adaptation
for audio data in a qualitative experiment and a quantitative
experiment. The results showed that the proposed eventness
model detected audio events in spectrogram images compara-
ble with the baseline model. Moreover, the eventness model
is more robust to classifying infrequency events. Qualitative
results also showed that the eventness model can exploit both
the temporal and spectral content of the audio events.

The work in this paper is a proof-of-concept for the event-
ness model. In the future, there are several other modifica-
tions or research directions that will be explored. First, the
feature maps are generated from a VGG-16 CNN that was
pre-trained on the ImageNet dataset meaning that they are
tailored to natural image representations. Recently, the Au-
dioSet dataset [18] has been released with millions of audio
clips thereby allowing for a CNN to be trained on purely au-
dio data and removing the natural image representations in-
herent in the feature maps. Other models to generate feature
maps will also be explored that are not limited to the VGG-
16 model. Second, the current RPN using all locations on
the feature map to generate proposals. However, the event-
ness model itself can determine areas on the spectrogram with
the highest importance for the classification task. We there-
fore propose to use attention based models [19] to automat-
ically learn the proposals. Finally, we would like to modify
the model such that a true end-to-end representation can be
learned, i.e., where only the raw audio files are used as input
instead of spectrograms as input to the Faster R-CNN.
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