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ABSTRACT

The greedy decoding method used in the conventional sequence-to-
sequence models is prone to producing a model with a compounding
of errors, mainly because it makes inferences in a fixed order, re-
gardless of whether or not the model’s previous guesses are correct.
We propose a non-sequential greedy decoding method that general-
izes the greedy decoding schemes proposed in the past. The pro-
posed method determines not only which token to consider, but also
which position in the output sequence to infer at each inference step.
Specifically, it allows the model to consider easy parts first, helping
the model infer hard parts more easily later by providing more in-
formation. We study a grapheme-to-phoneme conversion task with
a fully convolutional encoder-decoder model that embeds the pro-
posed decoding method. Experiment results show that our model
shows better performance than that of the state-of-the-art model in
terms of both phoneme error rate and word error rate.

Index Terms— Grapheme to phoneme conversion, Sequence
to sequence model, Encoder-decoder model, Convolutional neural
network, Decoding algorithm

1. INTRODUCTION

Grapheme-to-phoneme (G2P) conversion is a task of translating
from letters (grapheme sequence) to their pronunciations (phoneme
sequence). While G2P conversion can be done with dictionaries,
the number of words they contain is limited, and new words can-
not be converted by use of dictionaries [1]. For this reason, G2P
models which generate proper pronunciations based on data-driven
approach have been frequently employed in text-to-speech (TTS)
and automatic speech recognition (ASR) systems [2, 3].

What makes G2P conversion challenging is that it does not al-
ways follow systematic rules, and similar graphemes can be pro-
nounced differently [4]. Earlier work suggested joint sequence mod-
els for G2P conversion [5, 6, 7, 8], but these approaches require
alignment between grapheme and phoneme sequences, which may
not always be straightforward. With the introduction of the encoder-
decoder model [9, 10] using recurrent neural networks (RNNs) [11]
and attention mechanisms [12, 13] for machine translation, [14] ap-
plied them to the G2P task and achieved the state-of-the-art G2P
performance without explicit alignments. More recently, encoder-
decoder models using convolutional layers have been studied [15,
16, 17], and in particular [18] proposed a fully convolutional trans-
lation model using causal convolution for decoding, but these ap-
proaches have not been applied to G2P problem yet.
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Most encoder-decoder models proposed in the past carry out de-
coding sequentially, one step at a time from left to right, and use the
outputs from the previous steps as decoder inputs. In some cases,
however, the beginning of the sequence may be the most difficult
part to infer, and inaccurate inference in the beginning can nega-
tively affect what follows, which may result in serious compounding
errors. On the other hand, if the decoding order is not fixed and a
model starts decoding from the easiest part of the sequence to infer,
then the model can utilize input with more information when it de-
codes difficult parts. For example, when a person plays a crossword
puzzle, it is a good strategy to fill in the easiest blank first, referring
to the hints given so far. According to this greedy strategy, the easy
parts filled in earlier can be used as hints later.

A typical decoding method for sequence-to-sequence model is
greedy decoding in which the token with the highest conditional
probability at each step is selected from left to right. In order to
improve performance, beam search that keeps several most likely hy-
potheses has been commonly used despite increased computational
complexity. Unfortunately, while there is room for improvement in
the decoding methods, there have only been a few studies focusing
on them [19, 20]. [19] presented modified beam search algorithm
which is more explorative than the typical ones. [20] proposed a de-
coding algorithm that trains a model to maximize a target decoding
objective such as word error rate (WER) or BLEU using a determin-
istic policy gradient method. However, the proposed decoding algo-
rithms in [19, 20] cannot allow flexible decoding order, and therefore
cannot be free from compounding error problem.

Motivated by the above remarks, a non-sequential greedy decod-
ing (NSGD) method proposed in this paper is a generalized version
of the greedy decoding. Our method considers not only which token
to select next but also which position to consider at each inference
step. Since NSGD operates non-sequentially, convolutional neural
networks (CNN) [21] appear to be more suitable for NSGD than
RNN which has a serial structure. Inspired by the model structure
of [18], we attempt to combine fully convolutional encoder-decoder
model with NSGD. To the best of our knowledge, our work is the
first study that applies fully convolutional encoder-decoder model on
the G2P task and proposes a novel decoding algorithm by extend-
ing traditional greedy decoding for sequence-to-sequence encoder-
decoder model.

In this paper, we present a new convolutional encoder-decoder
model with NSGD. We verify the effectiveness of our model on G2P
conversion task compared to the baseline models including the state-
of-the-art model.

The rest of the paper is organized as follows: Section 2 de-
scribes a fully convolutional encoder-decoder model applying
NSGD method and presents its inference and training procedures.
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Fig. 1. The proposed convolutional encoder-decoder model with NSGD during test.

We show experimental results on G2P conversion task in Section 3.
Section 4 presents conclusion and future work.

2. PROPOSED MODEL

2.1. Model Structure

Our convolutional encoder-decoder model uses two inputs, source
sequence S = (s1, . . . , sN ) and target sequence T = (t1, . . . , tN )
ofN tokens each, where subscript n ∈ {1, . . . , N} represents an in-
dex in a sequence. For clarity, we assume that the maximum lengths
of source and target sequences are same. The source vocabulary set
VS and the target vocabulary set VT contain candidate tokens s and
t, respectively.

The encoder network consists of several number of residual
blocks [22]. Each block consists of two rectifier linear units (ReLU)
and convolutional layers. It also contains dropout [23] and normal-
ization [24] layers as regularizers. Using embedded source sequence
XS ∈ RN×d generated from S where d is the embedding size,
the encoder outputs source representation RS ∈ RN×d through the
residual blocks.

Using embedded target sequence XT ∈ RN×d generated from
T , the decoder network also builds target representation RT with
residual blocks of which structures are exactly same as those of the
residual blocks in the encoder. The decoder then concatenates and
decodes two representationsRS andRT using residual blocks. Sub-
sequently, a single convolutional layer with width-1 filter projects
the representation to the sequence of logits L = (L1, . . . , LN ) ∈
RN×|VT |. Stacking a softmax layer on top of the network, the model
finally outputs prediction probabilities P = (P1, . . . , PN ) where
Pn = softmax(Ln).

2.2. Inference with Non-Sequential Greedy Decoding

With NSGD, the model iteratively infers the most likely part among
the candidate positions of T that are not inferred yet. Superscript k
denotes the number of positions of T predicted by the model so far.
Specifically, we define T k as the partially generated target sequence
with the k positions already predicted by the model and the restN−
k positions of blank tokens. The blank token, one of the elements

in VT , does not correspond to any phoneme, and is used to indicate
that the positions filled with these tokens in T k should be replaced
by the model’s predictions. We also define Ik ⊂ {1, . . . , N}, where
|Ik| = k, as the set containing indices of k positions predicted by
the model so far. NSGD initially starts with T 0, and updates T k to
T k+1 until the fully generated target sequence TN is obtained.

Algorithm 1 Inference procedure with NSGD
Require: sequence-to-sequence model Gθ with weights θ; source

sequence S.
1: Initialize target sequence T 0 with blank tokens and set I = ∅.
2: for k ∈ {0, . . . , N − 1} do
3: T k+1 ← T k.
4: Generate P k using Gθ with inputs S and T k.
5: Compute Y k = (yk1 , . . . , y

k
N ) andCk = (ck1 , . . . , c

k
N ) from

P k using argmax and max, respectively.
6: for n ∈ {1, . . . , N} do
7: if n ∈ I then
8: ckn ← 0
9: end if

10: end for
11: n∗ ← argmaxn (C

k).
12: tk+1

n∗ ← ykn∗ .
13: I ← I ∪ {n∗}.
14: end for
15: return TN .

The details of update procedure from T k to T k+1 are as fol-
lows: The model produces P k from given source sequence S and
target sequence T k. Predicted sequence Y k = (yk1 , . . . , y

k
N ) where

ykn ∈ VT and confidence sequence Ck = (ck1 , . . . , c
k
N ) are com-

puted from P k where ykn = argmaxn(P
k
n ) and ckn = maxn (P

k
n ).

We define the confidence value of prediction at the n-th position as
the maximum value of P kn . The model chooses the position index n∗

with the highest confidence value among the indices not included in
Ik. The only update from T k to T k+1 is replacing the blank token at
the n∗-th position with ykn∗ . Figure 1 shows an example of inference
procedure of our model, generating the phoneme sequence from the
grapheme sequence ‘KNIGHT’. There are two positions with blank
tokens, and the blank token at the third position is replaced with the
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Fig. 2. The proposed convolutional encoder-decoder model with NSGD during training.

phoneme ‘T’. Algorithm 1 shows detailed inference procedure with
NSGD.

2.3. Training Procedure

Training procedure with NSGD is presented at Algorithm 2. During
inference, the model with NSGD faces various cases of T k. There
are 2N possible cases of T k when assigning each position with either
a blank token or the ground truth token. Since the sequence without
blank tokens is not fed to the model during inference, this case can
be excluded. During training, we sample an input from these 2N −1
cases and feed it to the model (Figure 2).

We use random sampling function r : T → T ′ which re-
places a random subset of ground truth tokens in T with blank
tokens. Using r, we generate randomly sampled target sequence
T ′ = (t′1, . . . , t

′
N ) and feed it to the model. r is applied element-

wise, i.e., r(T ) = (r1(t1), . . . , rN (tN )) = (t′1, . . . , t
′
N ) such

that:

rn(tn) =

{
tn if εn < τ2

0 otherwise (1)

where i.i.d. random samples τ and εn for n ∈ {1, . . . , N} are
drawn from the uniform distribution u(0, 1). τ is sampled at each
mini-batch, and εn is sampled for each input tn. Here we assume
that the value of a blank token is zero. The model outputs P from
given source sequence S and randomly sampled target sequence T ′

and backpropagates the loss which is defined as follows using cross
entropy loss function H:

Loss(T, P ) =

N∑
n=1

H(tn, Pn) (2)

Algorithm 2 Training procedure with NSGD
Require: sequence-to-sequence model Gθ with weights θ; source

sequence S; target sequence T
1: Initialize Gθ with random weights θ.
2: while not converged do
3: Generate T ′ from T with r following (1).
4: Generate P using Gθ with inputs S and T ′.
5: Update θ to minimize (2)
6: end while

3. EXPERIMENTS

3.1. Dataset

We performed experiments on the latest released version of CMU-
Dict US English dataset (0.7b, released at November 19, 2014)

which is publicly available.1 Recent studies [14, 25] on G2P con-
version task also used CMUDict, and they mentioned that they used
the partitions provided by the author of earlier work [5]. However,
the datasets they used vary in the number of instances and their data
preprocessing methods are not open to the public. For this rea-

Table 1. Preprocessed datasets.

Dataset Multiple
pronunciations

Stress
markings

Number of
instances

CMUDict-MS Kept Kept 133,853
CMUDict-M Kept Removed 133,853
CMUDict-S Removed Kept 116,919

son, we constructed three versions of datasets to train and validate
our model, addressing two preprocessing issues (Table 1). First, in
the original CMUDict dataset, 6.5% of words have multiple pro-
nunciations and preserving these words seems more realistic. On
the other hand, words with multiple pronunciations given during
training might confuse the model. Therefore we made two versions
of datasets where one version includes those words, and the other
excludes them. Second, we also constructed datasets with stress
markings on phonemes, making the task of our study more realistic
and difficult than those of previous studies, which removed the stress
markings [5, 14, 25]. We partitioned the dataset with a fixed random
seed into training, validation and test set, consisting of 85%, 5% and
10% of the preprocessed dataset, respectively. While partitioning
the datasets with multiple pronunciations, all pronunciations of each
word were assigned to the same partition. Hyperparameters of all
models including ours and baseline models were selected using the
validation set, not the test set.

3.2. Implementation

The proposed model had 15 residual blocks and a convolutional layer
for projection. For building representations from source, target and
concatenated sequences, 5 residual blocks were used, respectively.
The sizes of embedding vectors for source and target sequences were
both 256. We used Adam optimizer [26] with initial learning rate of
0.001 and mini-batch size of 256. For every 40 mini-batches, the
average loss was calculated, and if it was greater than the maximum
value of the previous three average losses, the learning rate was de-
cayed by multiplicative factor of 0.98. For regularization, dropout
with a keep probability of 80% was used at each residual block, and
weight decay of 0.00001 is used. In order to verify the performance
of the proposed model, we considered [12] and the state-of-the-art
model for G2P conversion [14] as baselines. The hyperparameters

1http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/
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Table 2. Comparison of error rates on three versions of CMUDict datasets. ± indicates the standard deviation across 5 training runs of the
model. The baseline model marked as ? was reported as the state-of-the-art.

Model CMUDict-MS CMUDict-M CMUDict-S
PER (%) WER (%) PER (%) WER (%) PER (%) WER (%)

Encoder-decoder
+ attention [12] 8.00± 0.11 30.42± 0.48 5.91± 0.07 25.19± 0.20 8.00± 0.11 30.42± 0.48

Encoder-decoder
+ attention [14]? 7.63± 0.08 28.61± 0.37 5.72± 0.10 24.77± 0.38 7.88± 0.16 28.89± 0.41

Proposed
model 7.25±0.07 28.42±0.22 5.58±0.04 24.10±0.19 7.44±0.06 28.87±0.26

Table 3. Comparison of decoding results of an example word ‘entrap’. ◦ and • are symbols representing blank and padding tokens respectivly.
Among the phonemes, some vowels include digits representing stress. Grey cells mean incorrect prediction results.

Source of sequence Acquired phoneme sequence

Our model with NSGD

k = 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
k = 2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • •
k = 3 ◦ ◦ t ◦ ◦ ◦ ◦ ◦ • •
k = 4 ◦ n t ◦ ◦ ◦ ◦ ◦ • •
k = 5 ◦ n t r ◦ ◦ ◦ ◦ • •
k = 6 ◦ n t r ◦ ◦ ◦ • • •
k = 7 ◦ n t r ◦ p ◦ • • •
k = 8 ◦ n t r ◦ p • • • •
k = 9 ih0 n t r ◦ p • • • •
k = 10 ih0 n t r ae1 p • • • •

[14] with sequential greedy decoding eh1 n t r ah0 p • • • •
Ground truth ih0 n t r ae1 p • • • •

of each baseline model such as the number of layers, the number
of RNN hidden units, embedding size, dropout probability and ini-
tial learning rate were tuned on the validation set. Each model was
trained for 100 epochs and its best model in terms of WER on the
validation set was selected. We compared test performance of all
selected models, and beam search was not used. The entire code
for the proposed model including the decoding method and dataset
preprocessing are available online.2

3.3. Results

Table 2 presents the performances of our model on the test set, com-
pared to the baselines. The proposed model shows the best perfor-
mances in terms of both PER (phoneme error rate) and WER com-
pared to the baselines including the state-of-the-art model. Further-
more, the proposed model shows more stable results with lower stan-
dard deviations of error rates than the baselines.

The performace of our model in terms of WER slightly de-
creases in some cases during hyperparameter tuning, but no signifi-
cant performance degradation is found.

3.4. Decoding example

Table 3 shows the comparison of decoding results of an example
word ’entrap’. When NSGD is used, the padding tokens located at
the end of the target sequence is inferred first. After that, the conso-
nants that are easier to infer than the vowels with stress are inferred,
and then the rest of the paddings are inferred to determine the length
of the sequence. It postpones the inference on vowel phonemes
which is the most difficult part, and uses all the rest of the phonemes

2https://github.com/ctr4si/NSGD G2P

inferred so far as an input. The example demonstrates that utilizing
phonemes predicted earlier allows our model with NSGD to infer the
vowels with stress more accurately than [14] with sequential greedy
decoding.

4. CONCLUSION

In this paper, we proposed a non-sequential greedy decoding method
(NSGD) that generalizes traditional greedy decoding and two algo-
rithms for inference and training. We also proposed a fully convolu-
tional encoder-decoder model for NSGD. We were able to show the
effectiveness of the proposed model and decoding method by achiev-
ing the state-of-the-art performances on the G2P task with various
datasets and demonstrating the decoding results.

As future work, we plan to apply NSGD on various sequence-
to-sequence domains such as text summarization and machine trans-
lation to examine the potential of NSGD. There is also room for im-
proving the training and inference algorithms. It is necessary to mod-
ify the model so that parallel computation, which is an advatage of
employing the convolutional encoder-decoder models, can be used.
Random sampling approach used at the training procedure can be
replaced with more effective approaches. Instead of using random
drop sampling, we may apply the concept of replay buffer in rein-
forcement learning to sample inputs that a model is more likely to
experience during inference [27].
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