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ABSTRACT
This paper presents a Bayesian nonparametric latent fea-
ture model specially suitable for exploratory analysis of
high-dimensional count data. We perform a non-negative
doubly sparse matrix factorization that has two main ad-
vantages: not only we are able to better approximate the
row input distributions, but the inferred topics are also
easier to interpret. By combining the three-parameter and
restricted Indian buffet processes into a single prior, we
increase the model flexibility, allowing for a full spectrum
of sparse solutions in the latent space. We demonstrate
the usefulness of our approach in the analysis of coun-
tries’ economic structure. Compared to other approaches,
empirical results show our model’s ability to give easy-to-
interpret information and better capture the underlying
sparsity structure of data.

Index Terms— Bayesian nonparametrics, count
data, infinite matrix factorization

1. INTRODUCTION

Exploration in high-dimensional data needs to balance
predictive accuracy with interpretability [1]. When col-
laborating with experts in other fields, the primary goal
is often not only reducing some error measure, but rather
understanding the structure of data [2, 3, 4]. The data
exploration phase can then be turned into a data exploita-
tion phase via policy recommendations, medical protocols
or as a further improved discriminative model [5].

Data exploration comes in different forms. PCA and
factor analysis are linear methods that provide non-sparse
solutions with strong Gaussianity assumptions. Local lin-
ear embedding [6], isomap [7] and Gaussian process latent
variable models [8] learn non-linear manifolds in high di-
mensional spaces with non-sparse features; non-negative
matrix factorization [9] provides a low dimensional sparse
representation of the data. Also, Bayesian nonparametric
(BNP) models can be used for clustering [10] and sparse
feature analysis [11], in which the underlying latent dimen-
sion is unknown. Many applications have benefited from
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Fig. 1: Data considered in this paper. A non-zero
entry reflects a relative advantage of a country at export-
ing a given product. Note the triangular structure.

sparse data exploration models, like computer vision [12],
genomics [13, 14], psychiatry [16], or sports [17].

This paper presents a non-negative matrix factoriza-
tion model specially suitable for high-dimensional count
data. Our model provides easy-to-interpret features and
captures sparsity structure in data. This is illustrated in
the context of international trade and economic growth
[18, 19, 20]. Data considered in this paper is approxi-
mately triangular after reordering of rows and columns,
as shown in Fig. 1: here, countries have different diversity
degrees in their export portfolios, and thus different trade
strategies and skills. Our objective is then to capture
such triangular structure, e.g., discover the underlying
capabilities of countries, and their relationships.

We rely on two different extensions of the Indian buf-
fet process (IBP) to learn a potentially infinite number
of latent features. The three-parameter IBP allows for
different degrees of sharing between features [21], whereas
the restricted IBP allows for a general distribution over
the number of active features per row [22]. We combine
both elements into a sparse Poisson factorization scheme.
In the trade context, our model is able to represent dif-
ferent kinds of realities, from a world in which countries
with few skills focus on different types of products, to
a world in which poor countries have a strong overlap
in export skills. We also allow for data points to ex-
hibit different number of active features, e.g., we expect
poor countries to have very little features active, while
developed countries might have almost all features active.
Our contributions include a novel BNP model for count
data, a corresponding inference algorithm, and extensive
empirical validation in the context of trade data.
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2. THEORETICAL BACKGROUND

2.1. Indian buffet process (IBP)

The IBP is a stochastic process defining a probability
distribution over equivalence classes of sparse binary ma-
trices with a finite number of rows and unbounded number
of columns [11]. Although the number of columns is po-
tentially infinite, only a finite number of those will contain
non-zero entries due to the finite nature of the observed
data. The IBP can be derived taking the limit as K →∞
of a finite binary matrix Z ∈ {0, 1}N×K , where N is the
number of observations, and K is the number of latent
features. Each element znk is generated as:

πk ∼ Beta(α/K, 1),
znk ∼ Bernoulli(πk) (1)

where πk is the probability of observing a non-zero value
in column k, Zn• is the n-th row for sample n and Z•k is
the k-th column for feature k. We say that a feature k is
active for sample n if znk = 1. When K →∞, the above
finite model tends to the IBP, denoted by: Z ∼ IBP(α),
where α is the mass parameter controlling the a priori
activation probability of new features.

In the IBP, the expected number of active features
per row is distributed according to Poisson(α) and
the total number of active features K+, i.e., number
of columns with non-zero entries, is distributed as
Poisson

(
α
∑N

i=1
( 1

i

) )
. The single scalar parameter α has

thus an effect on both the density (total number of ones)
and sparsity structure (position of the non-zero values
within Z). Such assumption might be too restrictive in
general data exploration tasks, failing to capture situa-
tions such as a high number of latent features with low
activation levels, or varying degrees of per-row sparsity
in the latent matrix.

2.2. Extensions of the IBP

Three-Parameter IBP (3P-IBP) As its name indi-
cates, the 3P-IBP can be fully specified by three param-
eters [21]: α is the same mass parameter from the IBP,
σ ∈ [0, 1) controls the power-law behavior of the model
(weight decay), and c > −σ is the concentration parame-
ter that affects the a priori number of ones per column
(sharing degree across features). When c = 1 and σ = 0,
we recover the standard IBP model.

By introducing parameters c and σ, the latent matrix
Z (defined in 2.1) has a more flexible sparsity structure,
regardless of the sparsity density which is controlled by
α. The 3P-IBP gives more flexibility on the feature
weights, but has the disadvantage that the number of
ones per-row is still Poisson distributed a priori for all
data points, which might not be desirable in all scenarios.
This problem can be directly addressed by the R-IBP.

Restricted IBP (R-IBP) The recently developed R-
IBP allows for an arbitrary prior distribution f over the
number of active features per row [22]. The R-IBP has
two degrees of freedom α and f to respectively control
for sparsity degree and sparsity structure of Z. The
intuition behind the R-IBP is easy to explain in the
commonly used culinary metaphor for IBPs, where rows
design customers, and columns refer to dishes in an Indian
buffet [11]. Customers in the R-IBP have varying degrees
of hunger: some of them sample from many dishes in
the buffet (the non-zero values), while others only taste
a reduced set of dishes. This is generally convenient to
model structured data, e.g., international trade, where
developed countries are known to have more assets, and
thus are expected to exhibit a higher number of latent
features (capabilities) compared to poor countries.

3. OUR APPROACH

Modeling Let X ∈ NN×D be our input matrix of N
data points and D dimensions. We build an infinite latent
feature model for count data with Poisson likelihood and
Gamma-distributed factors:

xnd ∼ Poisson
(
Zn•B•d

)
, (2)

Bkd ∼ Gamma
(
αB ,

µB

αB
), (3)

where Z is a binary matrix, and αB and µB are the shape
and mean parameters of the prior Gamma distribution
for each element of matrix B. Sparsity in matrix B can
be induced simply by choosing αB � 1. Both Z and
B are then non-negative and sparse, which makes the
inferred latent variables particularly interpretable. To
decouple sparsity density and sparsity structure in Z, we
combine the advantages of both the R-IBP and 3P-IBP
into a single prior,

Z ∼ 3R-IBP(α, c, σ, f), (4)

where α, c, σ, and f refer to the parameters defined in
Sec. 2.2. We rely on a negative binomial distribution for
f , which is best understood as an overdispersed Poisson.
Hence it will naturally allow for countries to exhibit a
much variable range of active features. We refer to the
model as Sparse Three-parameter Restricted Indian buf-
fet process (S3R-IBP). It can be seen as a probabilistic
extension of non-negative matrix factorization where the
number of latent features is not fixed a priori, both matri-
ces are sparse, and soft-constraints on the latent sparsity
structure are imposed through a more flexible prior.

In the trade context, we have N countries, D products
and K+ non-empty latent features to be inferred. A given
row Zn• captures which latent features (skills) are active
for country n. Matrix B represents the effect of each
latent feature on every product. For instance, if a latent
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Algorithm 1 A single iteration of the MCMC inference
procedure for the S3R-IBP model.
1: Sample each element of Z using inclusion probabili-

ties [25, 22].
2: Sample latent measure π using MH steps [22].
3: Sample each element of B and X′ from their condi-

tional distributions (conjugate priors).
4: Sample hyperparameter α according to [10].

feature k is active for a certain country, all products
having high values in vector Bk• will be more likely to
be exported by that country.

Inference Since exact computation of the posterior dis-
tribution for the latent variables is intractable, we resort
to a Markov Chain Monte Carlo (MCMC) approach. Our
algorithm uses Gibbs sampling together with Metropolis-
Hasting (MH). Following [23], we introduce the auxiliary
variables x′

nd,1, . . . , x
′

nd,K for each observation xnd such
that xnd =

∑K
k=1 x

′

nd,k, and x
′

nd,k ∼ Poisson(ZnkBkd)
for k = 1, . . . ,K. Given such auxiliary variables, the
model is conditionally conjugate, and a Gibbs sampler
can be derived straightforwardly. The complete sampling
algorithm is described in Alg. 1.

4. EXPERIMENTS

Two publicly available trade datasets, the SITC and HS,
are considered for the year 2010. The data represents the
Revealed Comparative Advantage (RCA) of countries, a
normalized common measure in economics [24] already
illustrated in Fig. 1. Simulations are run for 10 different
train-test splits with a proportion of 90-10% entries. The
MCMC burn-in period is 30,000 iterations, and results
are averaged using the last 1,000 posterior samples.

Model hyperparameters We choose f = Negative-
Binomial(r, p), with r = [1, 2], and p = [0.1, 0.3, 0.5].
Results were equivalent using any of these priors. Here,
we report results for r = 1 and p = 0.1. We also ran
experiments for each combination of c = [1, 10, 20, 50] and
σ = [0, 0.25, 0.5, 0.75, 1]. Parameter c was found to be
more influential than σ. We here report the best setting
c = 50, and σ = 1. Hyperparameters for the Gamma
prior over α are shape and scale equal to one. Finally,
αB is set to 0.01 to induce sparsity, and µB = 1.

4.1. Quantitative evaluation

Table 1 compares our model against probabilistic matrix
factorization (MF) [26], non-negative MF (NMF) [27],
IBP [11], and sparse IBP (S-IBP) which uses αB < 1, in
terms of predictive accuracy and interpretability strength.

Accuracy All models present similar perplexity (the
lower, the better), except S-IBP, in which the sparseness
restriction degrades its performance significantly. S3R-
IBP has the same sparsity constraint, but its more flexible
prior compensates the penalty in perplexity, leading to a
performance close to the non-sparse models, i.e. MF and
IBP. The S3R-IBP match the perplexity performance of
non sparse methods, but keeping the results interpretable.

Interpretability To assess semantic quality, we rely
on coherence [28], which is an often-used metric in topic
modeling literature. The closer coherence is to zero, the
better. S3R-IBP outperforms IBP and S-IBP by far,
making it specially suitable for data exploration in high-
dimensional count scenarios. The non-sparse methods
present a very low coherence, as expected.

Sparsity structure Figure 2 evaluates the ability of
S3R-IBP to fit the input distribution of the number of non-
zero values per-row in X, versus IBP, S-IBP, and a simple
binomial model from the economic literature [29]. We
measure the “proximity” of the empirical and predicted
distribution via qq-plots. S-IBP underfits the distribution
for higher values, e.g., it predicts a lower number of
countries with high number of exports, in contrast to the
S3R-IBP model.

4.2. Qualitative evaluation

Interpretability Table 2 lists all the averaged latent
features learned by S3R-IBP. Table 3 shows feature exam-
ple F1 learned by IBP and S-IBP. Features are matched
across the 10-folds using the Jaccard index similarity.
S3R-IBP is able to give much shorter and concise de-
scriptions, as weights decrease at a faster pace and reach
higher values at the top. Products in the IBP list are
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Fig. 2: Capturing sparsity structure. S3R-IBP gives
the best fit for the distribution of number of non-zero
values per row in X.
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Metric MF NMF IBP S-IBP S3R-IBP

Log Perplexity 1.68 ± 0.01 1.61 ± 0.01 1.59 ± 0.04 3.26 ± 0.17 1.62 ± 0.01
Coherence −264.60 ± 4.74 −263.27 ± 7.45 −149.36 ± 7.56 −178.44 ± 4.50 −140.51 ± 2.73

(a) 2010 SITC database (N = 126, D = 744, 16k non-zero values, 17% sparsity)

Metric MF NMF IBP S-IBP S3R-IBP

Log Perplexity 1.48 ± 0.01 1.47 ± 0.01 1.58 ± 0.01 2.56 ± 0.12 1.57 ± 0.02
Coherence −264.73 ± 3.11 −264.67 ± 6.22 −148.91 ± 10.57 −168.39 ± 13.16 −134.51 ± 4.43

(b) 2010 HS database (N = 123, D = 4890, 77k non-zero values, 13% sparsity)

Table 1: Quantitative evaluation of accuracy and interpretability. S3R-IBP beats MF, NMF, IBP, and
S-IBP in terms of topic coherence while retaining similar predictive accuracy (in terms of test log-perplexities).

Id Products with highest weights

F1 misc. animal oils (0.78), bovine entails (0.72), bovine
meat (0.68), milk (0.63), equine (0.62), butter (0.58)

F2 synthetic woven, synth. yarn, woven < 85% synth.
F3 parts metalworking, tool parts, polishing stones
F4 Aldehyde–Ketone, glycosides–vaccines, medicaments
F5 synthetic rubber, acrylic polymers, silicones
F6 measuring instruments, math inst., electrical inst.
F7 vehicles parts, cars, iron wire
F8 improved wood, mineral wool, heating equipment
F9 elect. machinery, vehicles stereos, data processing eq.
F10 baked goods, metal containers, misc. edibles
F11 misc. articles of iron, carpentry wood, wood articles
F12 vegetables, fruit–vegetable juices, misc. fruit
F13 misc. pumps, ash–residues, chemical wood pulp
F14 synth. undergarments, feminine outerwear, men’s shirts
F15 misc. rotating, electric plant parts, control inst. of gas

Table 2: Features learned by S3R-IBP.
Products with higher weights are reported.

IBP

confectionary sugar (0.45)
plastic containers (0.43)

baked goods (0.41)
tissue paper (0.40)

metal containers (0.39)
soaps (0.39)

S-IBP

bovine (0.53)
improved wood (0.51)

misc. vegetable oils (0.50)
butter (0.50)

rape seeds (0.47)
misc. wheat (0.45)

Table 3: Competitors.
Example matched to F1.

Id Weight

F14 0.37
F12 0.32
F10 0.17
F2 0.16
F1 0.14
F9 0.13
F13 0.05
F6 0.04
F5 0.04
F4 0.04
F15 0.04
F7 0.03
F8 0.03
F11 0.02
F3 0.02

(a) M-F0

Id Weight

F8 0.69
F11 0.68
F15 0.60
F10 0.59
F7 0.52
F6 0.34
F13 0.32
F4 0.31
F3 0.31
F5 0.14
F1 0.05
F9 0.02
F2 0.01
F14 0.00
F12 0.00

(b) M-F1
Table 4: Meta-features. A
sharp division of the world arises.

heterogeneous. The S-IBP list includes items from a mix-
ture of farming and technological elements, whereas the
S3R-IBP list is more homogeneous.

Features correlation To analyze the existing corre-
lation between latent features, we apply our S3R-IBP
on Z as input data. Such a deep structure, i.e., using a
two-layer IBP, has already been explored in [30]. S3R-
IBP infers two meta-features, M-F0 and M-F1, which
assign different weights to each latent feature from the
first layer. Countries with an active M-F1 are those that
have more active features in the first layer and larger
GDP. M-F1 can be interpreted as the meta-feature that
distinguishes between developed countries and developing
ones, resulting in a sharp division of the world in terms
of capabilities.

M-F0 and M-F1 divide the original features into three
disjoint sets. The first set contains features whose weight
is either zero or insignificant in M-F1 (highlighted in red).
These define countries with least capabilities, dealing with
less complex products like farming or textile (see Table 2).
The second set is composed by F10 (in green), which has a
high value in both meta-features. This feature is present
in both developing and developed countries, although
developed countries do trade them more efficiently than
developing ones (higher weights). The last set includes

features whose weights in M-F0 are negligible compared to
their weights in M-F1 (in black). These features contain
products like chemicals and complex machinery, which
are mostly traded by developed countries.

Such sharp division among features suggests the ex-
istence of a “poverty” or “quiescence trap” in the spirit
of [29], a trap of development stasis in which some coun-
tries get stuck due to the inability to “acquire” capabilities
associated with the production of more complex products.

5. CONCLUSION

This paper presents the S3R-IBP model, a non-negative
and sparse infinite matrix factorization for data explo-
ration of high-dimensional count data.The model is able to
capture complex sparsity structure, and delivers compact,
easy to interpret features. We illustrate the usefulness of
this model to explain trade data, by interpreting latent
features as country capabilities which are required for
producing products. The presented approach is general
for any other count-data scenario where broad, flexible
assumptions are needed. As future work, we plan to
introduce a Markovian dependency in the latent space,
allowing for dynamic feature activation over time.
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