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ABSTRACT

We develop a new method called Discriminated Hub Graphical
Lasso (DHGL) based on Hub Graphical Lasso (HGL) by providing
the prior information of hubs. We apply this new method in two
situations: with known hubs and without known hubs. Then we
compare DHGL with HGL using several measures of performance.
When some hubs are known, we can always estimate the precision
matrix better via DHGL than HGL. When no hubs are known, we
use Graphical Lasso (GL) to provide information of hubs and find
that the performance of DHGL will always be better than HGL if
correct prior information is given, and will rarely degenerate when
the prior information is incorrect.

Index Terms— Gaussian graphical model, precision matrix,
graphical Lasso, discriminated hub graphical Lasso, prior informa-
tion

1. INTRODUCTION

Graphical model has been widely used in a variety of fields. A graph
consists of nodes, representing variables, and edges between nodes,
representing the conditional dependency between two variables [1].
In order to get a sparse and interpretable estimate of the graph, many
researches such as those from Yuan & Lin (2007) and Friedman et
al. (2007) have considered the optimization problem in the form
minΘ∈S{`(X,Θ)+λ ‖Θ− diag(Θ)‖1}, where X is an n×p data
matrix, Θ is a p× p symmetric matrix which contains the variables
of interest, and `(X,Θ) is a loss function [2][3][4][5][6]. In many
cases, we assume that `(X,Θ) is convex in Θ. There is a specific
kind of nodes called hubs, which are connected to a large number of
other nodes [7]. This is also an important characteristic in scale-free
networks [8][9][10]. Tan et al. (2014) had proposed a method called
Hub Graphical Lasso (HGL) to estimate the graph with hubs [5].
They decompose Θ as Z+V+VT , where Z represents conditional
dependency between non-hub nodes, and V represents conditional
dependency between hub nodes and other nodes. Instead of the l1
penalty in the above optimization problem, they used Hub Penalty
Function which is the minimal of the term λ1 ‖Z− diag(Z)‖1 +
λ2 ‖V − diag(V)‖1+λ3 ‖(V − diag(V))j‖q , with respect to V,Z

such that Θ = Z+V+VT [5]. Notice that ‖·‖1 denotes the sum of
the absolute values of all the matrix elements, while ‖(·)j‖q denotes
the q-norm of the jth column of the matrix.

Since HGL does not require prior information about hubs, and
the number of hubs found by HGL is always not more than that of
true hubs, we hope to refine HGL by providing the prior information
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about hubs if we have some beforehand. We introduce the Discrim-
inated Hub Penalty Function P(Θ), which is the minimal of Q(Θ)
with respect to V,Z such that Θ = V + VT + Z, where

Q(Θ) = λ1‖Z− diag(Z)‖1 + λ2

∑
j /∈D

‖(V − diag(V))j‖1

+λ3

∑
j /∈D

‖(V − diag(V))j‖q + λ4

∑
j∈D

‖(V − diag(V))j‖1

+λ5

∑
j∈D

‖(V − diag(V))j‖q (1)

Here D ⊂ {1, 2, · · · , p} contains prior information of hubs and we
impose constraints that λ4 ≤ λ2, λ5 ≤ λ3. In the penalty, we give
“loose conditions” to nodes in D so that they tend to be estimated as
hubs. We will show that DHGL always performs better than HGL
and keeps stable even if incorrect prior information is provided.

2. METHODOLOGY

2.1. Discriminated Hub Graphical Lasso

2.1.1. Optimization Problem

We continue the definitions and notations in Introduction. Combin-
ing Discriminated Hub Penalty Function with the loss function, we
have the convex optimization problem

minimize
Θ∈S,V,Z

{`(X,Θ) + Q(Θ)} ;

subject to Θ = V + VT + Z (2)

where S depends on the loss function `(X,Θ), and Q(Θ) is defined
in the Introduction.

Similar to that in Tan et al. (2014), we encourage the solution
of Z to be a sparse symmetric matrix, and V to be a matrix with
columns either entirely zero or almost entirely non-zero. Here λ1 ≥
0 controls the sparsity in Z [5]. For variables in D, λ5 ≥ 0 controls
the hub nodes selection, and λ4 ≥ 0 controls the sparsity of each
hub’s connections to other nodes. Similar for λ2 and λ3 for variables
not in D. Here we set q = 2, same as Tan et al. (2014) [11][12][5].

As we can see, the “discrimination” involves using different tun-
ning parameters controlling hub selection and hub sparsity for dif-
ferent columns in V, or different variables (variables in D vs. not
in D). When D = ∅, it reduces to the convex optimization prob-
lem corresponding to Hub Penalty Function in Tan et al. (2014).
When λ2, λ3, λ4, λ5 →∞, it reduces to the classical way to obtain
a sparse graph estimate. Generally, D contains variables to be less
penalized with λ4 ≤ λ2 and λ5 ≤ λ3.
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When x1, . . . ,xn
i.i.d.∼ N(0,Σ), we simply set `(X,Θ) =

− log det Θ + trace(SΘ), where S is the empirical covariance ma-
trix of X [3]. Then the Discriminated Hub Graphical Lasso (DHGL)
optimization problem is

minimize
Θ∈S

{− log det Θ + trace(SΘ) + Q(Θ)} . (3)

with S = {Θ : Θ � 0 and Θ = ΘT }. Again, when D = ∅, it re-
duces to Hub Graphical Lasso (HGL) in Tan et al. (2014), and when
λ2, λ3, λ4, λ5 →∞, it reduces to the classical Graphical Lasso.

2.1.2. Computational Complexity of ADMM

We can use Alternating Direction Method of Multipliers (ADMM) to
solve the convex optimization problems proposed above [13][14][15].
The algorithm details as well as derivations are very similar to those
of Algorithm 1 in Tan et al. (2014), which is not provided here due
to the page limit.

Also notice that the computational complexity isO(p3) per iter-
ation for solving DHGL, same in magnitude as HGL. We have also
performed a simulation study to illustrate this. We have found that
the run time per iteration scale the similar way with p regardless
of other parameters, and the number of iterations increases as p in-
crease. Moreover, HGL and DHGL perform similarly in terms of
run time and number of iterations. The simulation setup and results
are not shown here due to the page limit.

2.2. Tuning Parameter Selection

We can select tunning parameters (λ1, λ2, · · · , λ5) by minimizing
the same BIC-type quantity as proposed by Tan et al. (2014), which
is

BIC(Θ̂, V̂, Ẑ) = −n · log det(Θ̂) + n · trace(SΘ̂)

+ log(n) · |Ẑ|+ log(n) ·
(
ν + c · [|V̂| − ν]

)
(4)

where the number of estimated hub nodes ν =
∑p
j=1 1{|V̂j |>1},

| · | denotes the number of unique non-zero matrix elements, and
c ∈ (0, 1) is a constant [5]. Same as Tan et al. (2014), here we
choose c = 0.2 for our simulation experiments [5].

In order for both optimal solutions for V and Z, i.e., V? and
Z? to be non-diagonal, we can select tuning parameters such that
λ4 ≤ λ2, λ5 ≤ λ3 and [5]

λ2

2
+

λ3

2(p− 1)
1
s

≤ λ1 ≤
λ2 + λ3

2
,where

1

s
+

1

q
= 1

Detailed proof is not provided here due to the page limit.

2.3. Algorithms in the Application of DHGL

2.3.1. DHGL Applied with Known hubs

In Tan et al. (2014), HGL is proposed assuming they do not know
beforehand which nodes are hubs. However, before estimating the
dependency structures among different nodes, we sometimes have
domain knowledge of some dependency. In this case, we can use
DHGL to utilize the prior information of hubs to estimate Θ more
accurately. In this section, we give Algorithm 1 using DHGL to
estimate Θ when some hubs are known.

Notice that here D contains the prior information, and we pro-
pose λ4 ≤ λ2 and λ5 ≤ λ3. In HGL, when λ2 and λ3 get smaller,

Algorithm 1 DHGL Applied with Known Hubs

1. Use HGL to get the estimated hubs ĤHGL.

2. Set D = K \ ĤHGL, where K is a set of known hubs.

3. If D 6= ∅, use DHGL to estimate Θ and get the estimated
hubs ĤDHGL, where λ1, λ2, λ3 remain the same values as
those in HGL and λ4, λ5 are selected using the BIC-type
quantity. Then, set Ĥ = ĤHGL

⋃
ĤDHGL as the set of esti-

mated hubs. If D = ∅, use the estimation in HGL directly.

more edges and hubs tend to be etimated since entries in Θ̂HGL tend
to be larger due to less restrictions, so we can find more correct edges
or hubs. In this way, however, the number of incorrect edges or
hubs found may also increase. If some hub nodes or prior infor-
mation about which nodes are likely to be hubs are given, it is en-
couraged to give“loose conditions” such that only the entries in the
corresponding columns of the estimated precision matrix tend to be
larger, which is what DHGL does.

Also notice that we set D = K \ ĤHGL. If a known hub node
in K fails to be estimated as a hub node by HGL with too many
zeros in the corresponding column of Θ̂HGL, we are encouraged to
give “loose conditions” to it in order to get estimated Θ̂DHGL with
some of the corresponding entries larger. In this way we can find
more correct edges. However, if a node has been estimated as a hub
node by HGL with enough nonzeros in the corresponding column
of Θ̂HGL but we still give “loose conditions” to it, the corresponding
column of Θ̂DHGL may be overamplified, making the performance of
DHGL even worse than HGL. So we exclude ĤHGL from K.

Finally, we combine the hub nodes found by HGL and DHGL
together to prevent losing useful information about hubs. While
DHGL finds more correct edges of the nodes in D, a few correct
edges found earlier by HGL may disappear, making some hub nodes
found by HGL not estimated as hub nodes by DHGL any more.

2.3.2. DHGL Applied without Known Hubs

In the previous section, we discuss the application of DHGL when
some hubs are known. However, we often do not have any prior
information about hubs. In this section, we give Algorithm 2 using
the Graphical Lasso (GL) to provide prior information and DHGL to
estimate Θ. Notice that | · | is the cardinality of the set.

Algorithm 2 DHGL Applied without Known Hubs

1. Use HGL to get the estimated hubs ĤHGL.

2. (Prior Information Screening) Adjust regularization parame-
ter λ of GL from large to small until |ĤGL,λ \ ĤHGL| > 0

and |ĤGL,λ
⋃
ĤHGL| ≤ max{|ĤHGL| + a, b|ĤHGL|} where

a ∈ N+,b > 1 but b ≈ 1 and ĤGL,λ is the set of estimated
hubs by GL with the parameter λ.

3. Set D = ĤGL,λ \ ĤHGL which is non-empty.

4. Use DHGL to estimate Θ, where λ1, λ2, λ3, λ4 remain the
same values as those in HGL and λ5 is selected using the
BIC-type quantity.

The BIC-type quantity can help us select the tuning parameters
to get a relatively accurate estimate of Θ. However, |ĤHGL| is always
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not more than the number of true hub nodes |H| due to the penalty
on the number of estimated hub nodes in the BIC, especially when
|H| is relatively large. Therefore, we are encouraged to use some
tools to find extra prior information of the hubs not found by HGL.

Since GL is fast (less thanO(p3) for sparse Θ [3]), we can adjust
the regularization parameter of GL from large to small quickly to
get nodes that belong to ĤGL,λ but not belong to ĤHGL. These extra
nodes are considered likely to be hubs if |ĤHGL| < |H|, although
there is no guarantee for this. We set the extra nodes as discriminated
nodes, i.e., nodes in D.

Since the prior information provided by GL may not be correct,
we keep λ4 = λ2 to be conservative and only select λ5 using the
BIC-type quantity in DHGL. If the extra nodes are true hubs, λ5

tends to be selected small to make BIC-type quantity small so that
more true edges and hub nodes will be found. If the extra nodes
are not true hubs, λ5 tends to be selected the same as λ3 and the
estimated Θ̂ tends to be the same as that in HGL. As we can see,
the algorithm tends to be open to correct prior information to make
improvements, and immune to incorrect information to keep stable.

3. RESULT AND ANALYSIS

3.1. Measurement of Performance

In the simulation studies, the precision matrix Θ and the set of in-
dices of hub nodes H are given, and we estimate Θ using our ap-
proaches displayed above. For j 6= j′, we know that if |Θjj′ | 6= 0,
a true edge between j and j′ exists. If further j ∈ H, this is also
a hub edge. Then we set a tolerance value t (in the simulations, we
use t = 0.005). Then if |Θ̂jj′ | > t, an edge between j and j′ is es-
timated. The estimated hubs Ĥr are defined by the set of nodes that
have at least r edges. Then we can define the number of correctly
estimated edges, the proportion of correctly estimated hub edges, the
proportion of correctly estimated hub nodes, the sum of squared er-
rors between Θ and Θ̂ similar to those defined in Tan et al. (2014)
[5]. We have also defined the effective accuracy rate of hub nodes by
the proportion of all p nodes that are correctly estimated as hubs or
correctly estimated as non-hub nodes (excluding the known hubs).

3.2. DHGL Applied with Known Hubs

In this experiment, firstly, we use the simulation set-up I in Tan et al.
(2014) with p = 150, n = 50, r = 30, |H| = 5 and suppose we
know two true hubs randomly [5]. We fix λ1 = 0.4 and consider two
cases where λ3 = 1 and λ3 = 1.5. In each case, λ2 ranges from 0.1
to 0.7. In DHGL, for simplicity, we do not use the BIC-type quan-
tity to select λ4 and λ5, but set λ4 ralatively smaller than λ2 and
λ5 = 0.1. For every set of tuning parameters, we conduct 50 simu-
lations and average the results. Figure 1(a) shows the comparison of
measures of performance between HGL and DHGL.

From the figure, we see that for every set of tuning parameters,
the number of correctly estimated edges, the proportion of correctly
estimated hub edges and the sum of squared errors perform better in
DHGL than those in HGL. For the effective proportion of correctly
estimated hub nodes and the effective accuracy rate of hub nodes,
HGL performs better than DHGL, reasonably because the discrim-
inated nodes (known hubs) are not considered in the calculation of
the two measures. In order not to lose useful information, we com-
bine the hub nodes found by HGL and DHGL so that we can always
get better information of hub nodes using our method.

Besides, we consider three other cases for (p, n) ∈ {(200, 50),
(200, 100), (300, 100)}, where λ2 = 0.4, λ3 = 1, λ4 = 0.2, r =

p/5 and other parameters are set to the same. We give the Figure 1(b)
of performances of 50 simulations when (p, n) = (300, 100). All
of the three results are similar to the case when (p, n) = (150, 50).

3.3. DHGL Applied without Known Hubs

In the experiment, we use the simulation set-up I in Tan et al. (2014)
with p = 150, n = 50, r = 30 and |H| ∈ {5, 10} [5]. We fix
λ1 = 0.4, λ3 = 1 and select λ2 from [0.05, 0.15] using the BIC-
type quantity. For prior information screening, we set a = 2 and
b = 1.1. In DHGL, we select λ5 from [0.5, 1] using the BIC-type
quantity. Figure 1(c) and 1(d) display the comparison of 50 simula-
tions between HGL and DHGL when |H| = 10 and 5, respectively.

From Figure 1(c), we see that when |H| = 10 which is relatively
large, all of the five measures in DHGL outperform those in HGL.
Notice that there are 4 out of 50 simulations where the accuracy rates
of estimated hub nodes in HGL equal to 1, which means the nodes
in D are not true hubs, but all the performances in DHGL do not
degenerate.

From Figure 1(d), we see that when |H| = 5 which is relatively
small, there are 31 out of 50 simulations where the accuracy rates
of estimated hub nodes in HGL equal to 1. Among them, only 5
simulations have accuracy rates of estimated hub nodes degenerated
in DHGL with other four measures of performances degenerated
slightly. However, for the rest 19 simulations where the accuracy
rates of estimated hub nodes in HGL are less than 1, which suggests
|ĤHGL| < |H|, 14 of them have five measures of performances in
DHGL outperforming those in HGL obviously.

These two results display both the advantage and robustness
of DHGL applied without known hubs. When |ĤHGL| < |H|,
DHGL always performs better than HGL. On the other hand, when
|ĤHGL| = |H| which is not always the case, the performance of
DHGL rarely degenerates and always keeps the same as HGL.

4. DISCUSSION

Based on Hub Graphical Lasso in Tan et al. (2014), we propose
Discriminated Hub Graphical Lasso to estimate the precision matrix
when some prior information of hub nodes is known. For the cases
where some hub nodes are known or no hub node is known, we
construct corresponding algorithms to make improvements on the
measures of performance. The improvements essentially result from
the increase in the number of tuning parameters when utilizing the
prior information. In this case, the BIC-type quantity tends to be
smaller than that in HGL when the optimal tuning parameters are
selected. The computational complexity for DHGL is the same as
that in HGL, but the algorithms generally implement both HGL and
DHGL once, which is more time-consuming but the running time
remains in the same scale.

In both algorithms, only the prior information of hubs not found
by HGL are set in D, so sometimes we even cannot make use of the
prior information, especially whenD = ∅. Thus, it remains an open
question how to use DHGL only to make improvements and make
use of all prior information of hubs.

As for Algorithm 2, we select relatively small a and b when
screening prior information using Graphical Lasso, which is conser-
vative and may limit the performance of the algorithm. In the future,
we will try to figure out how to select the optimal a and b. In other
words, the difference between the number of estimated hub nodes
in HGL and the number of true hub nodes will be studied in depth.
Moreover, other approaches to detect prior information of hubs apart
from Graphical Lasso are still to be studied.
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(a) (b) (c) (d)

Fig. 1. Measures of performances including number of correctly estimated edge (row 1), proportion of correctly estimated hub edges (row
2), proportion of correctly estimated hub nodes (row 3), sum of squared errors (row 4), effective accuracy rate of hubs (row 5) of HGL
and DHGL. Column (a) and (b) show the cases when some hubs are known, while column (c) and (d) show the cases when no hub is
known. For the first two columns, row 3 and 5 are calculated not considering known hubs. For column (a), the dark blue lines with round
points and light green lines with triangular points correspond to the cases when λ3 = 1 and λ3 = 1.5, respectively, while the solid lines
and dashed lines correspond to DHGL and HGL, respectively. Notice that the horizontal axes suggest changes in λ2, and 50 simulations
are conducted for each set of parameters with average calculated. The rest three columns show the measures of performances in each of
the 50 simulations, where the 50 simulations on the horizontal axes are sorted based on the accuracy rates of hub nodes. Here the red
solid lines and blue dashed lines correspond to DHGL and HGL, respectively. Column (b) shows the cases when p = 300, n = 100 and
(λ1, λ2, λ3, λ4, λ5) = (0.4, 0.4, 1, 0.2, 0.1) with known hubs. Column (c) and (d) show the cases when p = 150, n = 50 without known
hubs, with |H| = 10 in (c) and |H| = 5 in (d).
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