
SCALABLE HIERARCHICAL MIXTURE OF GAUSSIAN PROCESSES
FOR PATTERN CLASSIFICATION

T. N. A. Nguyen⋆ A. Bouzerdoum⋆† S. L. Phung⋆

⋆ School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Australia
† College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar

ABSTRACT

This paper introduces a novel Gaussian process (GP) classification

method that combines advantages of global and local GP approx-

imators through a two-layer hierarchical model. The upper layer

consists of a global sparse GP to coarsely model the entire dataset.

The lower layer is a mixture of GP experts which uses local informa-

tion to learn a fine-grained model. A variational inference algorithm

is developed for simultaneous learning of the global GP, the experts

and the gating network. Stochastic optimization can be employed

for large-scale problems. Experiments on benchmark binary classi-

fication datasets demonstrate the advantages of the method in terms

of scalability and classification accuracy.

Index Terms— Gaussian processes, variational inference, pat-

tern classification

1. INTRODUCTION

Gaussian processes are powerful tools for Bayesian regression and

classification. Model selection for GPs is realized by maximizing

the marginal likelihood, and inference is performed by calculating

the posterior of latent variables. In GP regression, closed-form so-

lutions can be obtained. In classification, due to the non-Gaussian

likelihood, we must resort to approximate inference methods to esti-

mate the marginal likelihood and posterior. For more details on the

approximation methods, the reader is referred to the reviews in [1]

and [2].

The main limitation of GP is its high computational cost, mainly

due to the inversion and storage of the kernel matrix. In regression

setting, many sparse approximation methods have been proposed to

overcome this limitation; a review can be found in [3]. Common

to these methods is the approximation of training data with a small

set of inducing points. In FITC [4], inducing points are optimized

against the approximate marginal likelihood. In [5], inducing points

are found by minimizing a variational lower bound of the marginal

likelihood. This method has been shown to produce better placement

of inducing points than FITC. In [6], Hensman et al. reformulated the

variational bound derived in [5] to enable stochastic optimization,

allowing the application to problems with millions of samples.

Recently, there has been much interest in sparse GP approxima-

tion for classification [7, 8, 9]. The generalized FITC presented in

[8] combines the sparse approximation prior derived in FITC with

a Bernoulli likelihood and uses expectation propagation (EP) to ap-

proximate the posterior. Like FITC, it leads to suboptimal placement

of the inducing points. In addition, there is no systematic way to ap-

ply stochastic optimization to further reduce the computational cost

for this method. It is therefore only limited to problems with a few

thousand data samples. Recently, in [9], Hensman et al. proposed a

variational sparse GP classifier which optimizes a generalized form

of the objective function derived in [6]. The classifier inherits the

two desirable properties of [6]: the ability to place inducing points

optimally and the feasibility of using stochastic optimization.

The sparse approximation methods normally work well for sim-

ple datasets. However, a single GP accompanied by a small set of

global inducing points cannot account for the non-stationarity and

locality in large and complex datasets, as argued in [10]. To over-

come this limitation, we turn to a structure called mixture of GPs

[10, 11, 12, 13, 14]. In a mixture of GPs, a gating network divides

the input space into regions within which a specific GP expert is re-

sponsible for making predictions. In this way, non-stationarity and

locality in the data can be naturally addressed. The main limitation

of mixtures of GPs is that each expert is independently trained us-

ing only the local data assigned to it, without taking into account

the global information, i.e. the correlation between the clusters. The

trained experts are therefore likely to overfit the local data. The sec-

ond limitation of mixtures of GPs is due to the complexity of the

inference problem, which usually involves simultaneous learning of

the experts and the gating network. Therefore, approximation tech-

niques are often required. Many existing mixtures of GPs, such as

those in [10, 15, 12], resort to the intensive MCMC sampling, which

can be very slow. Recently, in [13, 16, 14], variational inference has

been used as a more flexible and faster alternative to MCMC sam-

pling for mixtures of GP experts in regression setting. However, it is

not trivial to adapt these variational mixtures of GPs to classification

setting. To the best of our knowledge, there are still no publicly avail-

able methods using variational mixtures of GPs for classification.

In this paper, we propose a GP approximation method for clas-

sification that combines the advantages of sparse approximation and

mixture of GPs to exploit both the global and local information from

the data. Our model has a two-layer hierarchical structure. In the

upper layer, a sparse GP accompanied by a set of global inducing

points is used to coarsely model the whole dataset. The lower layer

comprises multiple GP experts, each of which makes use of the local

information for fine-grained modeling. These experts share a com-

mon prior mean function modeled by the upper layer to avoid over-

fitting. Inference in our model involves simultaneous learning of the

global GP, the experts and the gating network. For this, we develop

a two-step variational inference algorithm and adopt the idea of [9]

to enable stochastic optimization in large-scale problems.

The remainder of the paper is organized as follows. Section 2 in-

troduces the theoretical background of GP classification. Section 3

presents the proposed model, and Section 4 describes the variational

inference approach for the model. Section 5 presents the experi-

ments and results. Finally, Section 6 concludes the paper.

2. BACKGROUND

We consider a binary classification problem where a training set D
consists of input data, X=(xT

1, ..., xT
N)T with input points (row vec-

tors) xn ∈ X ⊂ R
D , and class observations y=(y1, ..., yN)T, the

2466978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

task is to compute the output y∗ at a new test location x∗. We as-

sume that there is an underlying latent function f(x) : X 7−→ R

that is distributed according to a GP, which is characterized by a

mean function m(x) and a covariance function κ(x, x′): f(x) ∼
GP(m(x), κ(x, x′)). The GP places a prior on the latent variables:

p(f) = N (mX,KXX), (1)

where f=[f1, ..., fN]T with fn≡f(xn), mX =[m(x1), ...,m(xN)]T

and KXX denotes the covariance matrix formed by evaluating

κ(x, x′) at all pairs of input vectors. The observed outputs are

then related to the latent variables according to the probit likelihood:

p(yn|fn) = B(yn|φ(fn)) = φ(fn)
yn(1− φ(fn))

1−yn , (2)

where B denotes Bernoulli distribution and φ(z)=
∫ z

−∞
N (x|0, 1)dx.

The main object of interest is the posterior over latent variables

p(f|y) = p(y|f)p(f)/p(y) =
N
∏

n=1
p(yn|fn)p(f)/p(y).

Since the likelihood p(yn|fn) is non-Gaussian, p(f|y) is not tractable

and must be approximated. The marginal likelihood p(y) must also

be approximated and then minimized to find the optimal parameters

for κ(x, x′). See [2] for a review of an assortment of approximation

methods. These methods require O(N3) in computation.

Given the posterior p(f|y), prediction can be made by first com-

puting the distribution of the latent variable f∗ at the test point x∗:

p(f∗|y) =
∫

p(f∗|f)p(f|y)df. Subsequently, marginalizing f∗ gives

a probabilistic prediction: p(y∗|y) =
∫

p(y∗|f∗)p(f∗|y)df∗.

The complexity of O(N3) is prohibitive for large datasets.

To reduce the computational cost, many sparse GP approximation

schemes have been proposed [7, 8, 9]. In these schemes, the latent

variables f are summarized by a set of inducing points consisting of

inducing inputs Z and their corresponding latent variables g. The

inducing inputs Z are points in the input space X , and the inducing

variables g are points on the same latent function as f. Using global

inducing points, a sparse approximation normally cannot deal with

non-stationarity and locality in complex datasets. Next, we intro-

duce a method to overcome this limitation.

3. HIERARCHICAL MIXTURE OF GP EXPERTS FOR

CLASSIFICATION

Here we develop a GP classification model that makes use of both

global and local information in the dataset through a two-layer hi-

erarchical structure. In the upper layer, a sparse GP, hereinafter

referred to as the global GP, is used to coarsely model the entire

dataset. In the lower layer, a gating network divides the input space

into regions; and within each region, a specific local GP, hereinafter

referred to as the expert, is used for finer modeling. The graphical

representation of the model is shown in Fig. 1.

Fig. 1: Graphical representation of the hierarchical mixture of GP

experts model for classification. Observation y0 is a duplicate of y.

The global GP in the upper layer is associated with a latent func-

tion f0(x), a zero mean function and a covariance function κ0(x, x′):
f0(x) ∼ GP(0, κ0(x, x′)). Let T be the number of local experts

in the lower layer. Each expert is associated with a latent function

fk(x), a mean function m(x) and a covariance function κk(x, x′):
fk(x) ∼ GP(m(x), κk(x, x′)), for k = 1, ..., T . Each global or

local GP is sparsely represented with a set of augmented induc-

ing points. Let fk, gk, Uk, θk and K(k), respectively, denote the

training latent variables, inducing variables, inducing inputs, hyper-

parameters of covariance function and covariance matrices for the

k-th GP (k = 0, ..., T). K
(k)
AB is formed by evaluating the function

κk(x, x′)) at all pairs of points (x, x′) with x in A and x′ in B. The

global GP places a joint prior distribution on the latent variables:

p

([

g0

f0

])

= N

(

0,

[

K
(0)
U0U0

K
(0)
U0X

K
(0)
XU0

K
(0)
XX

])

. (3)

Applying the Gaussian identities presented in Section A.2 of [17],

the marginal p(g0) and conditional p(f0|g0) are then given by

p(g0)=N (0,K
(0)
U0U0

), (4)

p(f0|g0)=N
(

K
(0)
XU0

[K
(0)
U0U0

]−1
g0,K

(0)
XX −K

(0)
XU0

[K
(0)
U0U0

]−1
K

(0)
U0X

)

. (5)

To enforce correlation among the local experts, all the local sparse

GPs share a prior mean function m(x), which encodes global infor-

mation from the upper layer. We set m(x) to be the mean of the con-

ditional p(f0(x)|g0) given in Eq. (5): m(x) = K
(0)
xU0

[K
(0)
U0U0

]−1g0.

Conditioning on g0 for the mean function, each local GP places a

joint distribution on its latent variables:

p

([

gk

fk

]
∣

∣

∣

∣

g0

)

= N

(

[

m(Uk)
m(X)

]

,

[

K
(k)
UkUk

K
(k)
UkX

K
(k)
XUk

K
(k)
XX

])

. (6)

Applying the aforementioned Gaussian identities again results in

p(gk|g0) = N (m(Uk),K
(k)
UkUk

), (7)

p(fk|gk, g0) = N
(

K
(k)
XUk

[K
(k)
UkUk

]−1(gk −m(Uk)) +m(X),

K
(k)
XX − K

(k)
XUk

[K
(k)
UkUk

]−1
K

(k)
UkX

)

. (8)

For simplicity, we introduce new latent variables hk = gk −m(Uk)
to substitute for gk. As a result, Eqs. (7) and (8) become:

p(hk|g0) = N (0,K
(k)
UkUk

), (9)

p(fk|hk, g0) = N
(

K
(k)
XUk

[K
(k)
UkUk

]−1
hk + KXU0

K
−1
U0U0

g0,

K
(k)
XX − K

(k)
XUk

[K
(k)
UkUk

]−1
K

(k)
UkX

)

. (10)

Let y0 and y denote the training outputs of the upper and lower

layers, respectively: y0 is a duplicate of y. f0 and y0 are related by a

probit likelihood given in Eq. (2). In the lower layer, for each obser-

vation (xn, yn), a latent variable zn indicates the expert to which the

observation belongs. The likelihood for the outputs y is also probit:

p(yn|f1(xn),...,fT(xn))=
T
∏

k=1

p(yn|fk(xn))
[zn==k]=B(yn|φ(fzn(xn))).

Expert indicators are specified by a gating network based on the

inputs. Since the target here is large-scale problems, the simple gat-

ing network suggested in [14] is employed for fast expert allocation.

In this gating network, the prior over zn is defined as

p(zn = k) =
N (xn|mk,V)

∑T

j=1
N (xn|mj ,V)

, (11)

where mk = 1
M

∑M

m=1 u
(k)
m represents the centroid of expert k, and

V=diag(v1, ..., vD) with vd=
1

T (M−1)

∑T

k=1

∑M

m=1(u
(k)
md−mkd)

2.

The prior (11) is based on the observation that the closer xn to mk,

the more similar it is to the inducing inputs Uk and the better its

output can be predicted by expert k; hence, it is given a higher

probability to be assigned to that expert.

2467

4. INFERENCE

Let f, h, U, θ and z denote the sets of all variables fk, hk,Uk,θk

and zn, respectively, for k=1, ..., T and n=1, ..., N . Inference for

the model involves estimating the posterior distribution of the latent

variables p(f, f0, h, g0, z|y, y0), and fixing the kernel hyperparame-

ters and the inducing inputs. Our target is to use variational infer-

ence with possibility of applying stochastic optimization for large

datasets. For this purpose, a set of global variables is required so

that the model conditioned on these variables factorizes in the ob-

servations and latent variables; see Fig. 1 in [6] for an illustration

of such models. The inducing variables g0 and hk, for k=1, ..., T ,

are well-suited for the role of global variables in our model. How-

ever, marginalizing these variables as in [5] eliminates the global pa-

rameters and re-introduces dependencies between the observations.

Hence, we choose to represent the variational distributions of these

variables explicitly as q(g0) and q(hk). It can be seen later that the

variational distributions for f and f0 can be derived in terms of q(h)
and q(g0). We then approximate the joint posterior distribution of h,

g0 and z by a factorized tractable variational distribution,

p(z, h, g0|y, y0) ≈ q(z, h, g0)=
N
∏

n=1
q(zn)q(g0)

T
∏

k=1

q(hk). (12)

A lower bound on the log marginal likelihood is first derived by

applying the standard variational equation, ln p(y, y0) ≥
Eq(z,h,g

0
)[ln p(yy0|z, h, g0)]− KL(q(z, h, g0)||p(z, h, g0))

= Eq(z)q(g
0
)q(h)[ln p(y|z, h, g0)] + Eq(g

0
)[ln p(y0|g0)]

−KL(q(h)||p(h))−KL(q(g0)||p(g0))−KL(q(z)||p(z)), (13)

where KL denotes Kullback-Leibler divergence. Applying Jensen’s

inequality to p(y|z, h, g0) and p(y0|g0) yields

ln p(y|z, h, g0) ≥ Ep(f|h,g
0
)[ln p(y|f, z)], (14)

ln p(y0|g0) ≥ Ep(f0|g0)
[ln p(y0|f0)]. (15)

This gives a further lower bound L on the log marginal likelihood:

L = Eq(z)[Eq(f)[ln p(y|f, z)]] + Eq(f0)[ln p(y0|f0)]

−KL(q(h)||p(h))−KL(q(g0)||p(g0))−KL(q(z)||p(z)), (16)

where q(f0) and q(f) are defined as: q(f0) ,
∫

p(f0|g0)q(g0)dg0

and q(f) ,
∫

p(f|h, g0)q(h)q(g0)dhdg0.
It has been shown in [5] that the implicit optimal variational dis-

tribution q(g0) to maximize the right hand side of Eq. (15) is Gaus-

sian (see Eq. (10) in [5]). Similarly, the optimal distribution q(h, g0)
to maximize the right hand side of Eq. (14), and hence the optimal

q(hk), is also Gaussian. We parametrize them as follows:

q(g0) , N (m0, S0) and q(hk) , N (mk, Sk). (17)

Since q(z) is assumed to factorize as in (12), the bound (16) becomes

L =
N
∑

n=1

T
∑

k=1

q(zn = k)Eq(fk(xn))[ln p(yn|fk(xn))]

+
N
∑

n=1
Eq(f0(xn))[ln p(yn|f0(xn))]− KL(q(h)||p(h))

− KL(q(g0)||p(g0))− KL(q(z)||p(z)). (18)

Only the marginals of q(f) and q(f0), i.e. q(fk(xn)) for k = 0, ..., T
and n=1, ..., N , are needed to compute L. With q(g0), q(hk), p(f0|g0)
and p(fk|hk, g0) given in Eqs. (17), (5) and (10), it is straightforward

to compute q(f0(xn)) in terms of m0 and S0, and q(fk(xn)) in terms

of m0, S0,mk and Sk for k=1, ..., T . Eq. (18) are left with only one-

dimensional integrals of the log-likelihoods, which can be computed

by numerical methods, such as Gauss-Hermite quadrature [18].

Inference is performed by maximizing the bound (18) with re-

spect to (w.r.t.) the variational distributions q(z), q(h), q(g0), the in-

ducing inputs U and the kernel hyperparameters θ. To deal with the

complex dependence between z and U, we present an iterative opti-

mization algorithm that alternates between the two following steps:

1. Fix q(z) and maximize the bound w.r.t. the parameters of

q(h), q(g0), U and θ using gradient based optimization.

2. Fix q(h), q(g0), U and θ, and maximize the bound w.r.t. q(z).

We now discuss each step in details. For the first step, the following

equation contains the relevant terms of the bound to be maximized:

L1 =
N
∑

n=1

T
∑

k=1
q(zn = k)Eq(fk(xn))[ln p(yn|fk(xn))] (19)

+
N
∑

n=1
Eq(f0(xn))[lnp(yn|f0(xn))]−KL(q(h)||p(h))−KL(q(g0)||p(g0)).

During optimization, to maintain positive-definiteness of the co-

variances Sk, we represent them as Sk=LkLT
k, and perform uncon-

strained optimization w.r.t. Lk. The difficult part for optimization is

to find the derivatives of the intractable terms Eq(fk(xn))[lnp(yn|fk(xn))].
As an intermediate step, we find their derivatives w.r.t. the means

and variances of q(fk(xn)) (denoted by µnk and σ2
nk). To this end,

the following Gaussian identities presented in [19] are used:

∂
∂µ

EN (x|µ,σ2)[f(x)] = EN (x|µ,σ2)[
∂
∂x

f(x)]

∂
∂σ2EN (x|µ,σ2)[f(x)] =

1
2
EN (x|µ,σ2)[

∂2

∂x2 f(x)].
(20)

By substituting f, µ and σ2 in (20) with lnp(yn|fk(xn)), µnk and σ2
nk,

we transform the derivatives of Eq(fk(xn))[ln p(yn|fk(xn))] w.r.t.

µnk and σ2
nk into one-dimensional integrals, which can be computed

by quadrature methods. Finally, the derivatives w.r.t. mk, Lk, Uk

and θk can be calculated by applying straight-forward algebra.

In the second step, the relevant terms to be maximized are

L2 =Eq(z)

{

Eq(f)[ln p(y|f, z)]
}

− KL(q(z)||p(z)) + const

=Eq(z)[ln p̃(y, z)]− Eq(z)[ln q(z)] + const, (21)

where p̃(y, z)) is a new distribution defined by the relation

ln p̃(y, z)) = Eq(f)[ln (p(y|f, z)p(z))] + const.

L2 is actually the negative KL divergence between q(z) and p̃(y, z),
which is maximized when q(z) = p̃(y, z), i.e.,

N
∑

n=1
ln q(zn) =

N
∑

n=1

T
∑

k=1

Eq(fk(xn))[ln p(yn|fk(xn))
[zn==k]]

+
N
∑

n=1

T
∑

k=1

ln p(zn = k)[zn==k].

With p(zn = k) given in Eq. (11), q(zn) is then a multinomial dis-

tribution, i.e., q(zn=k)=rnk, where rnk = ρnk/
∑T

i=1ρni is the

responsibility of expert k for xn, and ρnk is given by

ln ρnk =Eq(fk(xn))[ln p(yn|fk(xn))] + lnN (xn|mk,V). (22)

We assume that all the GPs have the same number of inducing

points M . Most of the computational cost for both optimiza-

tion steps arises from computing the expected likelihood terms

Eq(fk(xn))[ln p(yn|fk(xn))] for k = 0, ..., T and n = 1, ..., N .

This computation has the overall time complexity of O(NM2T).
Cost reduction for the second step comes from a careful inspection

of Eq. (22). In particular, the first term in Eq. (22) measures the

quality of prediction by expert k, which increases when xn is similar

to the inducing inputs Uk. This is more likely as xn is getting closer

to mk, i.e., the second term increases. This observation allows us

to bypass the expensive computation of the first term and arrive at a

simplified assignment ρnk=N (xn|mk,V). To reduce computational

cost for the first step, we assume that each data point is assigned

to only one expert, which is the one with highest responsibility:

zn = argmaxk rnk. The responsibilities are then reassigned as:

q(zn = k) = 1 iff zn = k and q(zn = k) = 0 otherwise. As a result,

the term q(fk(xn)) in Eq. (19) is only needed when q(zn=k) is non-

zero, i.e., the point xn is assigned to expert k. The time complexity

is then reduced to O(NM2). The memory complexity is O(NM).

2468

Since the bound (18) includes the sum over data points, we can

further reduce the computational cost by optimizing it in a stochastic

fashion: selecting a mini-batch of data at random for each iteration.

This gives the time and memory complexity of max(O(BM2), O(M3))
and max(O(BM), O(M2)), where B is the batch size.

The predictive distribution for an unseen point x∗ is given as:

p(y∗|x∗, y) ≈
T
∑

k=1

p(z∗ = k|x∗)
∫

p(y∗|fk(x
∗))q(fk(x

∗))dfk(x
∗).

5. EXPERIMENTS

This section presents the experiments to evaluate the performance of

the proposed hierarchical mixture of GP experts classifier (HMGPC)

on multiple benchmark classification datasets of varying sizes.

We use the squared exponential (SE) kernel with automatic

relevance determination (ARD) for all the GP classifiers. HMGPC

is implemented in Python as an extension to GPflow, which is

a GP library using TensorFlow [20] with the capability of making

use of GPU for faster computation. Optimization is performed using

Adadelta optimizer [21]. Experiments are carried out on a 3.47GHz

CPU with 8GB of RAM. GPU is not enabled in the experiments.

5.1. UCI benchmark datasets

First, we evaluate HMGPC on a number of binary classification

datasets of small to medium size from the UCI repository [22]. The

datasets with their sizes and input dimensions are listed in Table 1.

5-fold cross-validation is used with all the datasets.

Performance of HMGPC is compared to a number of GP classi-

fiers including the state-of-the-art generalized FITC (EP-FITC) [8],

the variational sparse GP classifier (VSGPC) [9], the mixture of

GP classifiers (MGPC) and the full GP classifier with EP (EP-GP)

[23]. MGPC is a special case of HMGPC where the upper layer

is removed. It is left with a set of local GP experts, and therefore

makes use of only local information. EP-FITC and VSGPC use

only global information where the entire dataset is summarized

by a set of inducing points. The four methods HMGPC, MGPC,

VSGPC and EP-FITC have the same computational complexity of

O(NM2) in time and O(NM) in memory. The number of inducing

points M is set to 2.5% of the training size for all of these methods

for fair comparison. The number of clusters in HMGPC and MGPC

is fixed to 3. EP-GP is the full GP classifier in which EP is used to

approximate the posterior. It has the time and memory complexity

of O(N3) and O(N2), respectively. Therefore, it cannot be tested

on the datasets with significantly more than a thousand samples.

In this experiment, stochastic optimization is not used (i.e.,

B = N). For the methods that are affected by random factors, each

of them is run 5 times. The optimization process of each method is

run until convergence or until it reaches 1000 iterations, whichever

is the earlier. The average error rates across different runs and folds

together with their standard deviations are reported in Table 1. The

average training times are also reported. HMGPC gives the best

performance in all the tested datasets. It provides big gains in error

rates over the second best classifier in 4 out of 6 datasets (26.3%
in splice, 48.2% in WFRN, 15.6% in phishing and 29.8% in EEG).

Interestingly, it even outperforms EP-GP which requires much more

training time and memory.

5.2. The US Flight dataset

This dataset has more than 2 million samples and is originally used in

[6] for regression task to predict the flight delay based on 8 attributes.

Here we consider the binary classification task to predict whether a

flight was delayed or not, i.e., whether its delay time is more than 15

minutes. We randomly select 1 million points for training and 100K

Table 1: Error rates (%) (along with their standard deviations in

brackets) and training times (s) on UCI benchmark datasets. The

best performances are shown in bold. The size and input dimension

of each dataset are given under its name.

Datasets splice german CTG WFRN phishing EEG

(N\D) (1000\60) (1000\24) (975\23) (5456\24) (11055\68) (14980\15)

E
rr

o
r

ra
te

HMGPC 5.6 (± 1.5) 22.4 (± 5.3) 7.7 (± 2.4) 2.9 (± 0.5) 3.8 (± 0.6) 3.3 (± 0.1)

VSGPC 7.6 (± 1.3) 23.2 (± 4.3) 8.2 (± 2.3) 5.6 (± 1.0) 4.7 (± 0.4) 4.7 (± 0.2)

MGPC 15.6 (± 3.1) 24.6(± 4.2) 28.6(± 18.5) 12.1 (± 0.6) 7.8 (± 0.6) 31.7 (± 0.5)

EP-FITC 18.0 (± 14.7) 25.4 (± 4.7) 9.2 (± 5.1) 6.6 (± 1.9) 4.5 (± 0.3) 44.9 (± 0.9)

EP-GP 9.9 (± 5.0) 22.5 (± 5.9) 7.8 (± 2.2) - (-) - (-) - (-)

T
ra

in
in

g
ti

m
e HMGPC 53 40 47 382 3246 2592

VSGPC 38 26 34 232 2063 1862

MGPC 39 25 39 263 2391 1726

EP-FITC 752 628 264 2964 8840 2666

EP-GP 8876 6735 29567 - (-) - (-) - (-)

102 103 104

Time (s)

20.5

21.0

21.5

22.0

22.5

23.0

23.5

24.0

E
rr
o
r
ra
te
 (

%
)

Logistic Regression

Linear SVM

Decision tree

Random forest

Adaboost

HMGPC M\B=1000\2500

HMGPC M\B=1000\5000

VSGPC M\B=1000\2500

VSGPC M\B=1000\5000

Fig. 2: Average test error rates vs. training time on US flight dataset.

points for test. Such a large dataset is prohibitive for normal sparse

GP classifiers such as EP-FITC, but can be handled by HMGPC and

VSGPC with stochastic optimization. Each of these two methods

is tested with 1000 inducing points and two different batch sizes of

2500 and 5000. HMGPC uses 3 clusters in its lower-layer. As base-

lines, we use logistic regression, random forest with depth of 2 and

100 estimators, decision tree with a maximum depth of 2, AdaBoost

with decision tree as base predictor, and linear SVM [24].

The test error rates as functions of training time are shown in

Fig. 2. It can be seen that both VSGPC and HMGPC are able to

exceed the accuracy of all the baseline methods in a just few minutes.

HMGPC outperforms all the other methods in terms of performance-

time trade-offs. It also gives the lowest error rate at convergence.

6. CONCLUSION

In this article, a novel GP classification method was presented based

on a hierarchical structure of sparse GPs. The model exploits both

global and local information from the data through a two-layer

model with a sparse global GP in the upper layer and a mixture of

sparse GPs in the lower layer. Simultaneous learning of the GPs and

the gating network is achieved by minimizing a variational lower

bound of the log marginal likelihood. Experiments on benchmark

datasets showed that the proposed model outperforms many state-

of-the-art sparse GP methods and generic classifiers. Stochastic

optimization is also supported to cater for large-scale problems.

Acknowledgments

This work is supported by a grant from the Australian Research

Council.

2469

7. REFERENCES

[1] Malte Kuss and Carl Edward Rasmussen, “Assessing approx-

imate inference for binary Gaussian process classification,”

Journal of Machine Learning Research, vol. 6, pp. 1679–1704,

2005.

[2] Hannes Nickisch and Carl Edward Rasmussen, “Approxima-

tions for binary Gaussian process classification,” Journal of

Machine Learning Research, vol. 9, no. 10, pp. 2035–2078,

2008.

[3] Joaquin Quiñonero-Candela and Carl Edward Rasmussen, “A

unifying view of sparse approximate Gaussian process regres-

sion,” Journal of Machine Learning Research, vol. 6, pp.

1939–1959, 2005.

[4] Edward Snelson and Zoubin Ghahramani, “Sparse Gaussian

processes using pseudo-inputs,” Advances in Neural Informa-

tion Processing Systems, vol. 18, pp. 1257–1264, 2006.

[5] Michalis K Titsias, “Variational learning of inducing variables

in sparse Gaussian processes,” Proc. 12th Intern. Conf. on Ar-

tificial Intelligence and Statistics, pp. 567–574, Florida, USA,

Apr. 16–18, 2009.

[6] James Hensman, Nicolo Fusi, and Neil D Lawrence, “Gaussian

processes for big data,” Proc. 29th Conf. on Uncertainty in

Artificial Intelligence, pp. 282–290, Bellevue, WA, USA, Jul.

11–15, 2013.

[7] Neil Lawrence, Matthias Seeger, and Ralf Herbrich, “Fast

sparse Gaussian process methods: The informative vector ma-

chine,” Advances in Neural Information Processing Systems,

vol. 15, pp. 625–632, 2003.

[8] Andrew Naish-Guzman and Sean Holden, “The generalized

fitc approximation,” Advances in Neural Information Process-

ing Systems, vol. 20, pp. 1057–1064, 2007.

[9] James Hensman, Alexander Matthews, and Zoubin Ghahra-

mani, “Scalable variational Gaussian process classification,”

Proc. 8th Intern. Conf. on Artificial Intelligence and Statistics,

pp. 351–360, California, USA, May 9–12, 2015.

[10] Carl Edward Rasmussen and Zoubin Ghahramani, “Infinite

mixtures of Gaussian process experts,” Advances in Neural

Information Processing Systems, vol. 14, pp. 881–888, 2002.

[11] Volker Tresp, “Mixtures of Gaussian processes,” Advances in

Neural Information Processing Systems, vol. 13, pp. 654–660,

2000.

[12] Jian Qing Shi, Roderick Murray-Smith, and DM Tittering-

ton, “Bayesian regression and classification using mixtures of

Gaussian processes,” Intern. Journal of Adaptive Control and

Signal Processing, vol. 17, no. 2, pp. 149–161, 2003.

[13] Chao Yuan and Claus Neubauer, “Variational mixture of Gaus-

sian process experts,” Advances in Neural Information Pro-

cessing Systems, vol. 21, pp. 1897–1904, 2009.

[14] Trung Nguyen and Edwin Bonilla, “Fast allocation of Gaussian

process experts,” Proc. 31st Intern. Conf. on Machine Learn-

ing, pp. 145–153, Beijing, China, Jun. 21–26, 2014.

[15] Edward Meeds and Simon Osindero, “An alternative infinite

mixture of Gaussian process experts,” Advances in Neural In-

formation Processing Systems, vol. 18, pp. 883–890, 2006.

[16] Shiliang Sun and Xin Xu, “Variational inference for infinite

mixtures of Gaussian processes with applications to traffic flow

prediction,” IEEE Transactions on Intelligent Transportation

Systems, vol. 12, no. 2, pp. 466–475, 2011.

[17] Christopher KI Williams and Carl Edward Rasmussen, “Gaus-

sian processes for machine learning,” the MIT Press, vol. 2,

no. 3, pp. 4, 2006.

[18] M Abramowitz and I Stegun, “Handbook of mathematical

functions with formulas, graphs, and mathematical tables (9th

printing) dover,” New York, p. 890, 1972.

[19] Manfred Opper and Cédric Archambeau, “The variational

Gaussian approximation revisited,” Neural computation, vol.

21, no. 3, pp. 786–792, 2009.

[20] Alexander G. de G. Matthews, Mark van der Wilk, Tom Nick-

son, Keisuke. Fujii, Alexis Boukouvalas, Pablo León-Villagrá,

Zoubin Ghahramani, and James Hensman, “GPflow: A Gaus-

sian process library using TensorFlow,” Journal of Machine

Learning Research, vol. 18, no. 40, pp. 1–6, apr 2017.

[21] Matthew D Zeiler, “Adadelta: an adaptive learning rate

method,” arXiv preprint arXiv:1212.5701, 2012.

[22] Arthur Asuncion and David Newman, “ The UC Irvine

Machine Learning Repository,” https://archive.ics.

uci.edu/ml/datasets.html, 2007, [Online; accessed

19-Octorber-2016].

[23] Hyun-Chul Kim and Zoubin Ghahramani, “Bayesian Gaussian

process classification with the EM-EP algorithm,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 28,

no. 12, pp. 1948–1959, 2006.

[24] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui

Wang, and Chih-Jen Lin, “LIBLINEAR: A library for large

linear classification,” Journal of Machine Learning Research,

vol. 9, no. Aug, pp. 1871–1874, 2008.

2470

