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ABSTRACT

Deep generative models (DGMs) have brought about a ma-
jor breakthrough, as well as renewed interest, in generative
latent variable models. However, DGMs do not allow for
performing data-driven inference of the number of latent fea-
tures needed to represent the observed data. Traditional linear
formulations address this issue by resorting to tools from the
field of nonparametric statistics. Indeed, linear latent variable
models imposed an Indian Buffet Process (IBP) prior have
been extensively studied by the machine learning community;
inference for such models can been performed either via exact
sampling or via approximate variational techniques. Based
on this inspiration, in this paper we examine whether simi-
lar ideas from the field of Bayesian nonparametrics can be
utilized in the context of modern DGMs in order to address
the latent variable dimensionality inference problem. To this
end, we propose a novel DGM formulation, based on the im-
position of an IBP prior. We devise an efficient Black-Box
Variational inference algorithm for our model, and exhibit its
efficacy in a number of semi-supervised classification exper-
iments. In all cases, we use popular benchmark datasets, and
compare to state-of-the-art DGMs.

Index Terms— Deep generative model, black-box varia-
tional inference, Indian Buffet Process prior.

1. INTRODUCTION

Linear latent variable (LLV) models, including, among oth-
ers, factor analysis (FA) and probabilistic principal compo-
nent analysis (PPCA), have a long tradition in the field of
generative modeling of high-dimensional observations with
underlying latent structure. One of the difficulties related
with the utilization of LLV models concerns the determina-
tion of the most appropriate number of latent variables (la-
tent vector dimensionality) for representing a given dataset,
without resorting to cross-validation. To this end, several
researchers have considered utilization of concepts from the
field of Bayesian nonparametrics.

Nonparametric Bayesian models postulate a (theoreti-
cally) infinite-dimensional latent variable space. Appropriate

priors are imposed over the postulated (infinite-dimensional)
latent variables, that allow for deriving effective, data-driven
posterior distributions over the latent dimension generation
process. Specifically, nonparametric formulations of LLV
models are most often obtained by imposition of an Indian
Buffet Process (IBP) prior over the model latent variables [1].
The IBP prior [2] is a nonparametric prior for latent feature
models where observations are influenced by a combination
of hidden features. It offers a principled prior in diverse
contexts where the number of latent features is unknown.
Its rationale consists in eventually utilizing only a finite set
of “effective” latent variables to represent the observed data
points. This set is determined in a heuristics-free, data-driven
way, as a part of the resulting inference algorithm [1].

Despite these advances, the linear assumptions of LLV
models cannot be considered realistic in most real-world data
modeling scenarios. As such, in the last couple of years,
immense research interest has concentrated on the develop-
ment of nonlinear latent variable models, where the inferred
latent variable posteriors are parameterized via deep neural
networks. This novel class of latent variable models is com-
monly referred to as deep generative models (DGMs) [3, 4].

Inspired from these advances, in this paper we address
the problem of automatic data-driven inference of the latent
variable dimensionality in DGMs. Specifically, we exam-
ine whether a nonparametric Bayesian formulation of DGMs,
based on the utilization of the IBP prior, would offer an attrac-
tive solution to this problem. To this end, we devise a novel
nonparametric hierarchical graphical formulation of DGMs,
whereby the observed data are described via a factorized la-
tent variable construction, driven by some latent indicators of
data point allocation which are imposed an IBP prior. We
derive an efficient inference algorithm for our model by re-
sorting to Black-Box Variational Inference (BBVI) [5, 6].

The remainder of this paper is organized as follows: In
Section 2, we briefly outline the methodological background
of our approach. In Section 3, we introduce our approach
and derive its inference algorithms. In Section 4, we perform
a thorough experimental evaluation, using benchmark data.
Finally, in the concluding Section, we briefly summarize our
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results.

2. THEORETICAL BACKGROUND

2.1. DGMs

In their basic formulation, DGMs assume that the observed
random variables x are generated by some random process,
involving an unobserved continuous random vector z, with
some prior distribution p(z). The observed variables x are
considered i.i.d. given the corresponding latent variables z,
with conditional likelihood function p(x|z;θ). This way, the
model’s log-marginal likelihood can be lower-bounded as (ev-
idence lower bound, ELBO):

log p(x) ≥ L(φ) = Eq(z;φ)[log p(x, z)− log q(z;φ)] (1)

where Eq(z;φ)[·] is the expectation of a function w.r.t. the
random variable z, drawn from q(z;φ), and q(z;φ) is the
approximate (variational) posterior over the latent variable z,
that is inferred from the data.

DGMs assume that the likelihood function of the model,
log p(x|z;θ), as well as the inferred approximate (varia-
tional) latent variable posterior, q(z;φ), are parameterized
via deep neural networks. For computational efficiency,
q(z;φ) is typically taken as a diagonal Gaussian:

q(z;φ) = N (z|µ(x;φ),diag σ2(x;φ)) (2)

where the µ(x;φ) and σ2(x;φ) are outputs of deep neural
networks, and diagχ is a diagonal matrix with χ on its main
diagonal. Under these assumptions, variational (approximate)
inference is performed by drawing Monte Carlo samples from
q(z;φ), which are further reparameterized as deterministic
functions of the posterior mean µ(x;φ), variance σ2(x;φ),
and some white random noise variable ε [3]:

z = µ(x;φ) + σ(x;φ) � ε, with ε ∼ N (0, I) (3)

where � is the elementwise product between vectors. Specif-
ically, these samples are used to approximate the intractable
posterior expectations in (1), in a way that results in low-
variance estimators, φ, of the sought posterior, q(z;φ) [3].

2.2. Nonparametric Modeling Using the IBP Prior

The IBP is a prior on infinite binary matrices that allows us to
simultaneously infer which features influence a set of obser-
vations and how many features there are. The form of the
prior ensures that only a finite number of features will be
present in any finite set of observations, but more features
may appear as more observations are received. Let us con-
sider a set of N objects that may be assigned to a total of
K → ∞ features. Let Z = [zik]

N,K
i,k=1 be a N × K matrix

of assignment variables, with zik = 1 if the ith object is as-
signed to the kth feature (multiple zik’s may be equal to 1 for

a given object i), zik = 0 otherwise. Then, a formulation of
the IBP that renders p(Z) amenable to variational inference
consists in the following hierarchical representation [7]:

zik ∼ Bernoulli(πk)∀i (4)

πk =

k∏
j=1

vj , vk ∼ Beta(α, 1) ∀k (5)

2.3. BBVI

BBVI is an effective means of performing variational infer-
ence for DGM variants that entail discrete random variables.
Let us consider a probabilistic model p(x, z) and a sought
variational family q(z;φ). BBVI optimizes the ELBO (1) by
relying on the “log-derivative trick” [8] to obtain Monte Carlo
estimates of the gradient that reads

∇φL(φ) = Eq(z;φ)[f(z)] (6)

where

f(z) = ∇φlog q(z;φ) [log p(x, z)− log q(z;φ)] (7)

Then, to reduce the variance of the estimator, one common
strategy in BBVI consists in the use of control variates. A
control variate is a random variable that is included in the
estimator, preserving its expectation but reducing its variance.
The most usual choice for control variates, which we adopt in
this work, is the so-called weighted score function: Under this
selection, the ELBO gradient becomes

∇φL(φ) =
N∑
n=1

Eq(z;φ)[fn(z)− anhn(z)] (8)

where fn(·) and hn(·) are the nth component of f(·) and h(·),
respectively, we denote

hn(z) = ∇φlog q(zn;φ) (9)

and the constants an are given by [5]

an =
Cov (fn(z), hn(z))

Var (hn(z))
(10)

On this basis, derivation of the sought variational posteriors is
performed by utilizing the gradient expression (8) in the con-
text of off-the-shelf stochastic gradient optimizers. Specifi-
cally, in this work we utilize AdaM [9].

3. PROPOSED APPROACH

Let us consider the dataset X = {xi}Ni=1. The proposed IBP-
DGM model assumes a conditional likelihood p(xi|zi;θ),
parameterized by deep neural networks, and selected simi-
lar to the case of conventional DGMs; for instance, in case of
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real observations, xi ∈ RD, a diagonal Gaussian likelihood
is selected; in cases of binary observations, xi ∈ {0, 1}D, we
opt for a Bernoulli likelihood. Further, we introduce the fol-
lowing hierarchical prior formulation for the latent variables
zi:

zi = z̃i · ẑi (11)

p(z̃i) = N (z̃i|0, I) (12)

p(ẑi) =

K→∞∏
k=1

Bernoulli(ẑik|πk) (13)

πk ,
k∏
j=1

vj , k ∈ {1, . . . ,∞} (14)

p(vk) = Beta(vk|α, 1), k ∈ {1, . . . ,∞} (15)

The introduction of the binary latent variables ẑi in Eq. (11)
essentially allows for the model to infer which latent features
z̃ik, k ∈ {1, . . . ,K → ∞}, are active for each one of the
observed data xi. This way, if a latent feature, say the kth,
yields drawn samples of the indicators ẑik that are equal to
zero for every observation, xi, it will be effectively ignored
by the model.

Under the infinite dimensional setting prescribed in Eqs.
(11)-(15), Bayesian inference is not feasible. For this reason,
we employ a common strategy in the literature of Bayesian
nonparametrics, formulated on the basis of a truncated, im-
plicitly finite, representation of the IBP [7]. That is, we fix
a value K � ∞, letting the posterior over the vk have the
property q(vK = 0) = 1. In other words, we set the πk equal
to zero for k > K ∀i. We then postulate:

q(z̃i;φ) = N (z̃i|µ(xi;φ),diag σ2(xi;φ)) (16)

q(ẑi;φ) =

K∏
k=1

Bernoulli(ẑik|π̂k(xi;φ)) (17)

q(vk;φ) = Beta(vk|ak(xi;φ), bk(xi;φ)), k ∈ {1, . . . ,K}
(18)

Here, the µ(xi;φ), σ2(xi;φ), π̂k(xi;φ), ak(xi;φ), and
bk(xi;φ) are parameterized by deep neural networks. Fi-
nally, we impose a simple spherical prior over the likelihood
parameters θ:

p(θ) = N (θ|0, σ2
θI) (19)

In addition, to facilitate computational efficiency, we consider
that the sought variational posterior q(θ) collapses to a sin-
gle point, θ̂, that essentially constitutes a point-estimate; i.e.,
q(θ) = δθ̂(θ), where δθ̂(θ) is a distribution over θ with all
its mass concentrated on θ̂.

This concludes the formulation of the IBP-DGM model.
Even though IBP-DGM is a generative model, we can use it
to perform semi-supervised learning. To this end, we only
need to modify the likelihood function so as to take into ac-
count (possible) label information. Specifically, we postulate

a different class-conditional likelihood function for each class
label, y, of the form p(x|z̃ · ẑ, y;θ); this is employed for all
the labeled training data points belonging to the correspond-
ing class. On the other hand, we continue to use the likelihood
function p(x|z̃ · ẑ;θ) for the available unlabeled data points.
Finally, we also need to introduce a prior p(y) over the labels
y of the observed data, as well as a corresponding variational
posterior q(y;φ). We have

p(y = c) =
1

C
, ∀c (20)

and
q(y;φ) = Cat(y|$(x)) (21)

where $(x) is parameterized via a deep network, and C is
the total number of classes.

Then, variational inference is performed by resorting to
BBVI, as described in the previous Section. The ELBO ex-
pression of the model reads:

L(φ;θ) =Eq(z̃;φ)[p(z̃)− log q(z̃;φ)]

+Eq(ẑ;φ)[p(ẑ)− log q(ẑ;φ)]

+Eq(y;φ)[p(y)− log q(y;φ)]

+
∑

xi:yi=y

Eq(z̃,ẑ;φ)[p(xi|z̃i · ẑi, y;θ)]

+
∑

xi:yi=∅

Eq(z̃,ẑ;φ)[p(xi|z̃i · ẑi;θ)]

(22)

4. EXPERIMENTS

To exhibit the efficacy of our approach, we perform evalu-
ation using the MNIST, Rotated MNIST+Background Im-
ages, MNIST+Background Images, MNIST+Random Back-
ground, Rotated MNIST, and (Small-)NORB benchmarks.1

We perform evaluations under an experimental setup where
1% of the available training data is presented to the trained
models as labeled training examples (randomly selected, in
equal proportions from each class), while the rest is used as
unlabeled training examples. To provide some comparative
results, apart from our method we also evaluate the M2 ap-
proach proposed in [12], which constitutes the parametric
equivalent of IBP-DGM in the context of semi-supervised
learning. We consider two alternative architectures of the
deep networks parameterizing the postulated likelihood and
posterior distributions of IBP-DGM. The first alternative
comprises simple Dense Layer (DL) architectures. The sec-
ond one is based on the Memory Network (MN) architecture
recently proposed in [13]. This employs an external hier-
archical memory to capture variant information at different
abstraction levels trained in an unsupervised manner.

1Before each epoch, the normalized MNIST images are binarized by sam-
pling Bernoulli distributions, similar to [10]. We normalize all NORB images
following the procedure suggested in [11]; we add uniform noise between 0
and 1 to each pixel value, to allow for effectively modeling them by means
of Gaussian conditional likelihoods, p(x|z̃ · ẑ, y;θ) and p(x|z̃ · ẑ;θ).
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In all our experiments, for simplicity and computational
efficiency, we use architectures comprising only one hidden
layer (DL or MN), with 500 (deterministic) units. We use
ReLU nonlinearities for all the postulated (deterministic) hid-
den units [14]. Initialization of the network parameters is
performed by adopting a Glorot-style uniform initialization
scheme [15]. The used MN layers comprise 100 memory
slots; that is the number of rows of matrix A, or, conversely,
the number of columns of the memory matrix M [13]. In
all cases, the maximum size of the postulated latent vectors z
(truncation threshold K of the variational posterior) is set to
50.2 Our source codes have been developed in Python, and
make use of the Tensorflow library [16].

In Tables 1 and 2, we provide the obtained performance
results (error rates %) of the evaluated methods under the two
considered experimental scenarios. These figures are average
performance results over 50 repetitions of our experiments,
with different random training data splits into labeled and un-
labeled subsets each time. As we observe, our approach yields
a clear improvement over the competition in all cases. To ex-
amine the statistical significance of the observed performance
differences, we run the Student’s-t statistical significance test
on the pairs of performances of our method and M2. The test
rejected the null hypothesis, with p-values below 10−8, in all
cases.

Another interesting observation is that the obtained im-
provement of IBP-DGM over M2 is more profound in the case
of the DL parameterization. We suspect this result is due to
the fact that the MN parameterization introduces an attention
mechanism which essentially puts more or less emphasis on
some latent characteristics of the data. This might turn out to
be more beneficial for some parametric model than for a non-
parametric one, which already includes a (different sort of)
mechanism for latent feature retention or omission.

Note also that IBP-DGM requires similar computational
time to generate one prediction compared to the competition.
Turning to the training algorithm of our approach, we can
report the following quite interesting finding: When using
the DL parameterization, IBP-DGM requires approximately
4 times more algorithm epochs to converge compared to one
M2 network; this is the case for all the considered bench-
marks. On the other hand, when using the MN parameter-
ization, both approaches require similar numbers of epochs
to converge; this is approximately 4 times more epochs com-
pared to one M2 network with DL parameterization. Our in-
terpretation of this finding is that the introduction of a mech-
anism that puts less or more emphasis on some latent features
requires that model training proceeds more slowly.

Finally, it is interesting to examine the values of the pos-

2In each case, the prior variance σ2
θ of the model parameters θ is heuris-

tically selected among the alternative values {10−3, 10−2, 10−1}, with the
aim of maximizing out-of-sample predictive performance. To execute AdaM,
we use a learning rate of 3×10−4, and an exponential decay rate for the first
and second moment at 0.9 and 0.999, respectively.

Table 1. Semi-supervised test error (%) using the considered
DL parameterization.

Method M2 IBP-DGM

MNIST 8.10 7.85
Rotated MNIST 38.80 32.82

MNIST+Background Images 16.16 8.99
MNIST+Random Background 12.34 7.78

Rotated MNIST+Background Images 12.69 8.03
NORB 18.02 15.14

Table 2. Semi-supervised test error (%) using the considered
MN parameterization.

Method M2 IBP-DGM

MNIST 8.04 7.45
Rotated MNIST 37.29 32.80

MNIST+Background Images 9.08 7.94
MNIST+Random Background 7.87 6.85

Rotated MNIST+Background Images 8.42 7.95
NORB 15.57 14.88

teriors over the latent indicators, q(ẑ·k;φ), obtained in each
one of the previously considered experimental scenarios. As
we have observed, our model tends to yield high enough pos-
terior values only for the first 10-12 latent components. In
most cases, the posterior values, q(ẑ·k;φ), of the active com-
ponents tend to yield higher mean values, and most impor-
tantly, higher standard deviations, in the case of the DL pa-
rameterization. In our view, this outcome vouches for our
previous claims that the attention mechanisms of the MN net-
work are actually complementary to the nonparametric fea-
ture omission/retention mechanisms of the IBP prior: When
both mechanisms are used, they tend to reinforce each other.
This results in a lower standard deviation for the q(ẑ·k;φ) val-
ues of the active components across the training data points.

5. CONCLUSIONS

In this paper, we addressed the problem of performing infer-
ence over the latent variable dimensionality of DGMs. To this
end, we devised a nonparametric formulation of DGMs, ob-
tained by utilizing the IBP prior. We performed inference for
the so-derived IBP-DGM model by resorting to the BBVI in-
ference scheme. As we showed, our approach is quite effec-
tive in terms of inferring the latent variable dimensionality,
and yields competitive classification performance. Remark-
ably, the observed modeling and predictive performance im-
provement did not come at the cost of extra computational
overheads. Our future work will focus on extending DGMs
so as to model heteroscedastic data, e.g. [17, 18], as well as
data with temporal dynamics of unknown order, e.g. [19].
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