
AUGMENTED LATENT DIRICHLET ALLOCATION (LDA) TOPIC MODEL WITH
GAUSSIAN MIXTURE TOPICS

Kedar S. Prabhudesai, Boyla O. Mainsah, Leslie M. Collins, and Chandra S. Throckmorton

Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.

ABSTRACT

Latent Dirichlet allocation (LDA) is a statistical model that is
often used to discover topics or themes in a large collection
of documents. In the LDA model, topics are modeled as
discrete distributions over a finite vocabulary of words.
The LDA is also a popular choice to model other datasets
spanning a discrete domain, such as population genetics and
social networks. However, in order to model data spanning a
continuous domain with the LDA, discrete approximations of
the data need to be made. These discrete approximations to
continuous data can lead to loss of information and may not
represent the true structure of the underlying data. We present
an augmented version of the LDA topic model, where topics
are represented using Gaussian mixture models (GMMs),
which are multi-modal distributions spanning a continuous
domain. This augmentation of the LDA topic model with
Gaussian mixture topics is denoted by the GMM-LDA
model. We use Gibbs sampling to infer model parameters.
We demonstrate the utility of the GMM-LDA model by
applying it to the problem of clustering sleep states in
electroencephalography (EEG) data. Results are presented
demonstrating superior clustering performance with our
GMM-LDA algorithm compared to the standard LDA and
other clustering algorithms.

Index Terms— Topic models, latent Dirichlet allocation,
Gaussian mixture models, clustering, sleep stage analysis.

1. INTRODUCTION

The latent Dirichlet allocation (LDA) topic model [1, 2] is
an unsupervised algorithm commonly used for discovering
topics or themes from a corpus of documents. The LDA
model assumes that each document consists of multiple
topics, where each topic is a distribution over words. Each
word is associated with multiple topics with varying proportions,
which makes the LDA an admixture or a mixed-membership
model. The admixture nature of the LDA model makes it a
powerful tool to model a collection of documents, as well as
similar data types with discrete structure, such as population
genetics [3] and social networks [4].
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The LDA topic model can potentially be extended to
applications with continuous data, such as inferring brain
states from neurological data. However, to apply the LDA
model to data in a continuous domain, discrete approximations
to the observations have to be made in order to quantize the
data space [5]. Making these discrete approximations can
be detrimental when training the model, as information is
lost when discretizing a continuous space. In this work,
we propose an extension to the LDA topic model to handle
continuous data by modeling topics as a mixture of Gaussians
or a Gaussian mixture model (GMM). We denote this new
model as the GMM-LDA model. We apply our model to the
problem of clustering sleep stages from electroencephalography
(EEG) signals to evaluate our proposed GMM-LDA model.

We first describe our extension to the LDA topic model in
Section 2, and provide a method to infer model parameters in
Section 3. We present an application of our GMM-LDA topic
model for clustering sleep stages in Section 4 and Section 5
and conclusions in Section 6.

2. TOPIC MODEL SPECIFICATION

Consider a collection of D documents. Each document d,
consists of words, wd,n, n = 1, . . . , Nd, where Nd is the
number of words in the dth document. Each document can
be viewed as a mixture of various topics, and each word
can be attributed to one of the topics [1]. The statistical
distribution over the documents can be represented by a topic
model. Probabilistic graphical representations of LDA and
GMM-LDA topic models are shown in Figure 1 (a) and (b),
respectively. A detailed description of the notations used in
both models is provided in Table 1.

2.1. Latent Dirichlet allocation (LDA)

According to the LDA model, illustrated in Figure 1(a), each
word in a collection of documents is assumed to be generated
using a two step process [2]. First a topic assignment,
zd,n ∈ [1, . . . ,K], is sampled from a distribution over topics,
zd,n ∼ Multinomial(θd), where θd1 is the document-specific
proportion over topics. Next, a word wd,n is sampled

1θd ∼ Dirichlet(α)
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Table 1: Description of the topic model notations shown in
Figure 1.

K : number of topics
Mk : number of Gaussian components in the kth topic
D : number of documents
Nd : number of words in the dth document
θd : proportion of topics in the dth document
πd,k : proportion of Gaussian components in the kth topic and the dth document
ψk : Discrete distributions over words in corpus for the LDA model
ψk,m ≡ {µk.m,Λk,m} : Mean and precision matrices of the mth Gaussian

component in the kth topic, for the GMM-LDA model
zd,n : topic indicator for the nth word and the dth document
ξd,n : component indicator for the nth word and the dth document
wd,n : nth word in dth document
α,β : Dirichlet distribution hyper-parameters for LDA model
α1,α2 : Dirichlet distribution hyper-parameters for the GMM-LDA model
β ≡ {µ0, λ0,W0, ν0} : Gaussian-Wishart distribution

hyper-parameters for the GMM-LDA model

from the corresponding topic distribution, wd,n|zd,n ∼
Multinomial(ψzd,n). Each topic distribution ψk,2 is a
distribution over a finite set of words. The nature of the
topic distribution limits the applicability of the LDA model
to observations confined to a finite dictionary, e.g. a set of
words in a document corpus.

2.2. Latent Dirichlet allocation with Gaussian mixture
topics (GMM-LDA)

We modify the LDA model such that the topic distributions
are distributions with support over a continuous space. In
the new model, illustrated in Figure 1(b), each document
is characterized by a mixture of topics, where each topic
is distributed as a GMM. The data generation process for
the GMM-LDA model can be described as follows. First,
a topic assignment is sampled from a distribution of topics,
zd,n ∼ Multinomial(θd)3. Since each topic is a GMM,
we also need to sample a Gaussian component assignment,
ξd,n ∈ [1, . . . ,Mk], where Mk is the number of Gaussian
components in the kth topic. The document- and topic-specific
distributions over Gaussian components are given by πd,k4.
Given a topic assignment, zd,n, a component assignment can
be sampled {ξd,n|zd,n ∼ Multinomial(πd,zd,n)}. Finally,
a word can be sampled from the ξthd,n Gaussian component
in the zthd,n topic, wd,n|zd,n, ξd,n ∼ Gaussian(ψzd,n,ξd,n).
Thus each topic distribution ψk,m5 is a Gaussian distribution
over the continuous space.

3. INFERENCE OF MODEL PARAMETERS

In the GMM-LDA model, the goal of inference is to estimate
the joint posterior over the latent variables, z, ξ,θ,π,ψ:

2ψk ∼ Dirichlet(β)
3θd ∼ Dirichlet(α1)
4πd,k ∼ Dirichlet(α2)
5ψk,m ∼ Gaussian-Wishart(β)
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(a) Latent Dirichlet allocation (LDA) 

(b) Latent Dirichlet allocation with Gaussian mixture topics (GMM-LDA) 

Fig. 1: Probabilistic graphical representation of (a) the
LDA and (b) the augmented GMM-LDA. Unshaded nodes
represent latent variables, shaded nodes represent observed
variables and solid nodes represent hyper-parameters. Plate
notation indicates replication of nodes, whereas directed
arrows indicate dependencies between variables. A detailed
description of the notations is provided in Table 1.

P (z, ξ,θ,π,ψ | w,α1,α2,β) =
P (z,ξ,θ,π,ψ,w|α1,α2,β)

P (w|α1,α2,β)
.

Evaluating this posterior requires computing the marginal
distribution of observed words, P (w|α1,α2,β), by integrating
over the continuous, {θ,π,ψ} and discrete {z, ξ} latent
variables. The discrete integral over z and ξ involves[
K
]∑

dNd
+

[∏
kMk

]∑
dNd

operations, which makes the
direct computation of the posterior intractable. Alternatively,
approximate inference of the posterior can be performed
using Gibbs sampling [6], which is a Markov chain Monte-Carlo
sampling scheme. By choosing conjugate priors, we can
analytically integrate out θ, π, and ψ and perform inference
by sampling topic (zd,n) and component assignments (ξd,n),
based on their joint probability (details provided in Table 2):

P (zd,n = k, ξd,n =m | w,α1,α2,β) ∝
P (zd,n = k | z−,α1)

× P (ξd,n = m | zd,n, z−, ξ−,α2)

× P (wd,n | zd,n, ξd,n,wk,m,−,β) (1)

4. APPLICATION: CLUSTERING SLEEP EEG DATA

We demonstrate the utility of the GMM-LDA model by
applying it to the problem of clustering sleep stages using
EEG signals. Monitoring EEG data during sleep allows for
the diagnosis of sleep disorders and provides an understanding
of sleep physiology [7,8]. Further, class labels corresponding
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Table 2: Equations to compute the joint probability in the
GMM-LDA model in (1) using Gibbs sampling.

P (zd,n = k | z−,α1) =
Nk,− + α1,k∑

kNk,− +
∑
k α1,k − 1

P (ξd,n = m | zd,n = k,z−, ξ−,α2)

=
Nk,m,− + α2,m∑

mNk,m,− +
∑
m α2,m − 1

P (wd,n | w−,k,m,β) ∼ TνN−d+1

{
µN ,

WN (λN + 1)

λN (νN − d+ 1)

}

µN =
λ0µ0 +Nk,m,−w

λ0 +Nk,m,−

WN =W0 + S +
λ0Nk,m,−
λ0 +Nk,m,−

(µ0 −w)(µ0 −w)T

νN = ν0 +Nk,m,−

λN = λ0 +Nk,m,−

w =
1

Nk,m,−

D∑
d=1

Nd∑
n=1

w−,k,m

S =
1

Nk,m,−

D∑
d=1

Nd∑
n=1

(wd,n −w)(wd,n −w)T

z− : Set of topic indicators excluding zd,n
ξ− : Set of Gaussian component indicators excluding ξd,n
w−,k,m : Set of observations allocated to the kth topic and the mth

Gaussian component excluding wd,n
Tν {µ,W} : Multivariate t-distribution (d = 4) with parameters µ, W

and ν degrees of freedom
Nk,m,− : Count of observations allocated to the kth topic and the mth

Gaussian component excluding wd,n

to sleep stages are available, which allows us to compare
the unsupervised clustering performance of our GMM-LDA
model against an upper-bound on performance using a
supervised algorithm.

4.1. Data

In this study, the Sleep-EDF database [9] was used for
analysis. This database comprises EEG signals recorded from
thirty healthy subjects during sleep. For each subject, 30s
time segments of the signals are classified into one-of-eight
classes. The six classes corresponding to sleep stages [10,11]
include: N1, N2, N3, N4, Wake (W) & REM (R). The
remaining two classes represent movement artifacts and
unscored segments, which were not used in this analysis.

4.2. Feature extraction and cross-validation details

Power spectral densities were estimated for each 30s time
segment, by averaging over 2s Hamming windowed segments

with 50% overlap [12]. Power estimates in Delta (f < 4Hz),
Theta (4Hz ≤ f < 8Hz), Alpha (8Hz ≤ f < 12Hz) and
Beta (12Hz ≤ f ≤ 20Hz) bands were used to generate four
frequency features, to train the model. Within the context of
topic modeling, the 4-dimensional feature vector over a 30s
time segment for a given subject is analogous to a word in a
document, wd,n, for d = 1, . . . , D and n = 1, . . . , Nd, where
D is the number of subjects and Nd is the number of 30s time
segments for the dth subject. In order to train the model in a
reasonable amount of time with cross-validation, recordings
from thirty subjects were split into groups of five. In a given
group, data from four subjects were used for training and
the fifth subject was used for testing. Hence, the model was
trained five times for each group, with each subject used for
testing.

4.3. Selection of GMM-LDA model hyper-parameters

To train the GMM-LDA model, we need to select the number
of GMMs (K), the number of Gaussian components in the
kth GMM (Mk), and the prior hyper-parameters (α1,α2,
β). We used K = 6, which corresponds to the number of
sleep stages. We selected Mk by minimizing the Bayesian
information criterion (BIC), which is a function of the
log-likelihood of the data with a penalty to restrict the number
of model parameters [13], and the model with the lowest BIC
is typically selected [14]. For each subject group, we fit data
corresponding to each sleep stage using a GMM with a varied
number of components and computed the BIC for each fit.
Based on this analysis, we selected M = [5, 10, 5, 10, 10, 5],
for sleep stages N1, N2, N3, N4, W and R, respectively. We
chose non-informative priors for other model parameters. For
the Gaussian-Wishart priors, we chose zero mean and identity
covariance hyper-parameters for β. For the Dirichlet priors,
we chose uniform and symmetric hyper-parameters by setting
α1 and α2 as vectors of ones.

4.4. Comparison to other models

We compared the unsupervised clustering performance of
the GMM-LDA model with five other unsupervised methods:
standard K-means, standard GMM, the LDA topic model and
the Gaussian-LDA topic model. K-means and GMMs are
standard single-membership clustering algorithms. For the
LDA model, EEG signals for each subject were represented
using the bag-of-patterns model [15, 16]. To obtain the
bag-of-patterns representation, features from all subjects
were first clustered using K-means, resulting in cluster
centroids or codewords. Next, each subject’s recording was
represented as a vector of occurrence counts of codewords.
The Gaussian-LDA is a special case of the GMM-LDA
model, where each topic consists of just one Gaussian, i.e.
Mk = 1, for k = 1 . . .K. In addition to these unsupervised
methods, we also tested performance using a supervised
method viz. the support vector machine (SVM) classifier, to
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compare the unsupervised methods against an upper bound
on performance.

4.5. Performance evaluation

For performance evaluation, topic assignments for each
subject were compared to the truth labels using Fowlkes-
Mallows score (FMS) [17]. The FMS computes the geometric
mean of precision and recall and is formally defined as
follows:

FMS(zd,−, ld,−) = TP√
(TP+FP )×(TP+FN)

where, zd,− are topic allocations for all time segments for
the dth subject and ld,− represent true class labels. True
positives (TP) are the number of sample pairs belonging to the
same clusters in both zd,− and ld,−, false positives (FP) are
the number of sample pairs belonging to the same clusters in
ld,−, but not in zd,− and false negatives (FN) are the number
of sample pairs belonging to the same clusters in zd,−, but
not in ld,−. FMS values range between 0 and 1, with higher
values indicating greater similarity between topic allocations
and class labels.

5. RESULTS AND DISCUSSION

Performance results of all algorithms are summarized in
Figure 2(a). Repeated measures analysis of variance (ANOVA)
was used to test statistical significance between the performan-
ces of various algorithms. Results of multiple comparison
tests are shown in Figure 2(b). We observed that the GMM-
LDA model provided the best performance amongst the
clustering algorithms. This suggests that the GMM-LDA
model provided the best fit to the sleep EEG data, by represen-
ting sleep stages as multi-modal GMMs over a continuous
space. Clustering using K-means and GMMs assumes that
each sleep stage is represented by a single unimodal Gaussian,
and does not allow for different proportion of sleep stages per
subject. The LDA allows for different proportion of sleep
stages to be represented using a topic model; however, the
data structure is lost when discretizing the continuous data
space using the bag-of-patterns representation. While the
Gaussian-LDA allows topics over a continuous domain, it
limits them to unimodal distributions.

6. CONCLUSIONS AND FUTURE WORK

We have presented an extension to the LDA topic model that
can handle data over a continuous domain. In this model,
topics are represented as a mixture of Gaussians spanning a
continuous domain instead of discrete distributions spanning
a finite dictionary. We demonstrated the utility of the GMM-
LDA model by clustering sleep EEG data and obtained
the best performance amongst the unsupervised clustering

(a)

SVM

GMM-LDA

Gaussian-LDA

LDA

GMM

K-Means

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fowlkes-Mallows Score

(b)

SVM

GMM-LDA

Gaussian-LDA

LDA

GMM

K-Means

Fig. 2: (a) Box plots of Fowlkes-Mallows score (FMS)
summarizing algorithm performance across thirty subjects. In
each box, the red line indicates the median (q2), and the lower
and upper limits indicate 25th(q1) and 75th(q3) quantiles,
respectively. The notch extremes correspond to the range
q2± 1.58(q3−q1)√

N
; the lower and upper fences indicate extreme

values not considered outliers, and outliers are indicated using
‘+’. (b) Plot of mean and confidence intervals of the FMS
estimated using repeated measures ANOVA with Bonferroni
correction (α = 0.05). Two algorithms have significantly
different means if their confidence intervals do not overlap.

algorithms, and most comparable to that of a supervised
classification algorithm.

Further improvements are needed for our GMM-LDA
model. In this work, we incorporated knowledge about the
sleep stage class labels to determine the number of topics,
K, and the number of Gaussian components within each
topic, Mk. However, there are certain cases where class
labels may not be available or are not well defined. Hence,
there is a need to automate the process of model selection,
which could be achieved by using Bayesian non-parametric
priors [18, 19], like Dirichlet processes, on topic proportions
(θ), and GMM component proportions (π). Also, the current
model assumes that observations are exchangeable, i.e. the
specific ordering of wd,n is neglected [1, 2]. This may be
a limiting assumption for time series data with a specific
sequence of events, such as sleep stages. An extension to
the current model can incorporate Markovian dependence
between observations. We will investigate these extensions to
the GMM-LDA model in future work.
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