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ABSTRACT

In recent years, radar has been employed as a fall detec-
tor, due to its superior sensing capabilities and penetration
through walls. In this paper, we introduce a multi-linear sub-
space fall detection scheme that exploits the three radar signal
variables: slow-time, fast-time, and Doppler frequency. The
proposed approach attempts to find the optimum orthonormal
subspaces that minimize the reconstruction error for different
modes of the radar data cube. Experimental results based on
real radar data obtained from multiple subjects and aspect
angles demonstrate that the proposed multi-dimensional prin-
cipal component analysis (MPCA) yields the highest overall
classification accuracy among other methods including phys-
ically interpretable pre-defined features and spectrogram-
based standard PCA.

Index Terms— Fall detection, principle component anal-
ysis, multi-linear subspace learning

1. INTRODUCTION

Falls are the major cause of accidents in the elderly popula-
tion [1]. Recent studies have revealed that falls were the lead-
ing cause of fatal and non-fatal injuries for people aged 65
and over. Therefore, fall detection systems have been iden-
tified as a major innovation opportunity to improve the qual-
ity of elderly life. Much attention has been recently given to
fall detection using radio frequency (RF) sensing modality.
This rising interest is driven by advances in machine learn-
ing, hardware-software integration, and an aging population
requiring effective elderly care and assisted living [2–5]. Dif-
ferent contributions to fall detection have proposed different
features that include pre-defined and automatically learned.
Whereas most work has focused on pre-defined physically in-
terpreted features [6–8], recent classification efforts have ap-
plied deep learning [9–12]. The latter lacks the availability
of large data size for proper training and performance vali-
dations. In addition to the approaches based on pre-defined
and learned features, motion classifications using standard
principal component analysis (PCA) has proven effective and
provided promising fall classification rates [13, 14]. PCA
has been applied to different data representation domains and
used to determine suitability of each domain for motion dis-
crimination [15]. In this paper, we apply PCA to the radar

data cube (RDC), rather than lower-dimension processing.
Radar backscattering signals from range-Doppler radar,

like frequency modulated continuous wave (FMCW), provide
target information along the three variables of fast-time, slow-
time, and Doppler frequency. Accordingly, two-dimension
(2D) joint-variable signal representations can be constructed,
depicting the received data in the time-frequency (TF) do-
main, the range-Doppler (RD) domain, and the range vs.
slow-time (range-map) domain. Compared to one-dimension
(1D) single-variable domain, the 2D joint-variable represen-
tations have shown to reveal intricate properties of the target
complex motions, specifically the time-dependency of tar-
get velocity, acceleration and higher-order motion moments.
Each 2D motion data representation provides distinct and
valuable information that might not be present in other 2D
domains.

This paper marks the first attempt to use three-dimension
(3D) joint-variable signal representation to exploit the un-
derlying dependency and correlations among the three radar
signal variables. Encouraged by the classification results
of standard PCA, and recognizing possibilities for improve-
ments, we pursue multi-dimensional PCA (MPCA) using
tensor analysis [16, 17]. Moreover, an unsupervised multi-
linear feature extraction method for RDC is introduced. It is
shown that the proposed method outperforms both standard
PCA and the case pre-selected features.

The paper is organized as follows. In Section 2, the tri-
domain representations of radar signals are presented. In Sec-
tion 3, the extraction process of pre-defined physically in-
terpreted features is described in detail. In Section 4, pro-
posed MPCA and standard PCA are explained in detail with
pre-processing step. In Section 5, the performance of the
proposed MPCA is contrasted with pre-defined features and
standard PCA. Finally, in Section 6, key conclusions are pre-
sented.

2. TRI-DOMAIN REPRESENTATION OF RADAR
SIGNALS

Range-map data representation depicts the change in target’s
range information over time. An example of range map is
depicted in Figure 1-(a) for falling. The second domain is
referred to as the TF domain and has been extensively em-
ployed to represent radar backscattering signals from human
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(a) Range-map (b) TF domain

Fig. 1: 2D joint-variable representations of falling data

subjects [18]. In this work, we use the spectrograms, which
is the magnitude square of the short time Fourier transform
(STFT), to represent raw Doppler signals in the TF domain.
The spectrogram of a discrete signal s(n), n = 0, 1, ..., N−1
is defined as:

S(n, k) =

∣∣∣∣N−1∑
m=0

s(n+m)h(m)e−j2πmk/N
∣∣∣∣2 (1)

where h(m) is a window function that has an effect on both
time and frequency resolutions. In the examples included in
this paper, spectrograms are generated using 1024 frequency
samples, a Hanning window of length 512, and an overlap of
256 samples. Signal power concentrations in the TF domain
are also referred as micro-Doppler signatures [19]. An exam-
ple of micro-Doppler signature for falling is shown in Figure
1-(b).

RD representation includes the effects of both target
velocity and range. Typically, a single RD frame can be
obtained by applying the Fourier transform for each range
bin over a period of slow-time. The multi-dimensional ten-
sor structure, created by stacking consecutive RD frames, is
called RDC. Visualization of the RDC is usually done by
a video sequence of RD frames, however, in [20], RDC is
visualized by creating a surface that has the same intensity
value within the slices of data cube. This can be accom-
plished by isosurface method which is a 3D extension of an
analog isoline. Volumetric representations of the RDC for
falling, sitting, bending, and walking are presented in Figure
2-(a), (b), (c), and (d) respectively. Note that, RDC gathers
fast-time, slow-time, and Doppler frequency information in a
single domain which is the motivation behind using RDC to
increase detection and reduction of false alarms.

3. FEATURE EXTRACTION METHODS

A vast number of pre-defined features related to physical
characteristics and kinematics of motions has been proposed
for human activity recognition with radar. In this work, we
consider 3 candidate spectrogram-based features: extreme
Doppler frequency, extreme torso frequency, and length of

the event. In addition to spectrogram-based features, we
also introduce the range spread feature extracted from the
range-map. The extreme Doppler frequency is obtained us-
ing an energy-based thresholding algorithm. The energy
corresponding to the slow time n is computed from the spec-
trogram as

ET (n) =

M∑
k=1

S(n, k)2 (2)

where k = 1, 2, ...,M are the Doppler indices. Next, for each
slow-time index n, the first frequency bin whose correspond-
ing spectrogram value is greater than or equal to the product
of a pre-determined threshold and ET is determined as the
envelope from which the extreme Doppler frequency can be
obtained. The extreme torso frequency, ftorso, defined as

ftorso = max
n
| − 1/2Ts + (λn − 1)/(M − 1)Ts| (3)

where λn = argmaxk S(n, k) and Ts is the sampling fre-
quency.

4. MULTI-LINEAR SUBSPACE APPROACH FOR
FEATURE EXTRACTION

4.1. Multi-linear Algebra Basics and Notations

In this section, we introduce basic concepts that are fun-
damental to the understanding of the underlying multi-
linear subspace methods. Vectors are denoted by lowercase
symbols, such as p; the normal uppercase symbols repre-
sent matrices, e.g., A. An Nth-order tensor is denoted as
X ∈ RI1×I2...×IN . Implemented algorithms often require
reshaping of the data, in the case of tensors this operation is
called unfolding, or matricization. Unfolding X along the
n-mode is denoted as X (n) ∈ RIn×(I1×...×In−1×In+1...×IN ).
Finally, the n-mode product of a tensor X by a matrix A is
defined by Y = X ×n A.

4.2. Pre-processing (e-CLEAN)

The first step of the proposed method includes a preprocess-
ing of the RDC. Our approach aims to suppress unwanted
distortions or noise effects and enhance the natural structural
integrity of the data. Therefore, we consider an extended
CLEAN (e-CLEAN) algorithm which directly operates on the
individual RD frames. The main principle of the original
CLEAN algorithm is to find the highest peaks in an image
which correspond to a real target location. At the each step of
the algorithm, maximum peak is extracted, then a portion of
the point spread function centered at that peak is subtracted
until some threshold is met [21]. In our approach, the number
of points which are needed to be removed are automatically
determined prior to extraction of peaks using a simple and ef-
ficient histogram-based method. The output of the algorithm
is depicted in Figure 3-(b) when a noisy falling RDC data is
given in Figure 3-(a).
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(a) Falling (b) Sitting (c) Bending (d) Walking

Fig. 2: Visualization of the volumetric RDC data for different activities

4.3. MPCA

In order to establish a baseline performance for automated
approaches, we first move to consider standard PCA that
directly operates on spectrograms. Assume that a set of
M training gray-scale spectrograms, Sm ∈ RI1×I2 m =
1, 2, ...,M , is vectorized and stored as, sm ∈ RIk where
Ik = I1 × I2. Next, total scatter matrix can be defined as

Sy =

M∑
m=1

(
sm − s̃

)(
sm − s̃

)T
(4)

where the sample mean is defined as, s̃ = 1
M

∑M
m=1 sm. The

objective of PCA is to maximize the variation captured by the
projection samples. The projection matrix U consists of of P
projection directions {u1,u2, ...,uP }. The objective function
can then be expressed as

{ũ(p)} = arg max
up;uT

p up=1

uTp Syup (5)

Each projection vector ũ(p) can be obtained as the pth
eigenvector associated with the pth largest eigenvalue (λP )
of total scatter matrix. Thus, projection matrix Ũ contains
the eigenvectors corresponding to the P largest eigenvalues
of total scatter matrix. These projection matrices are used to
train the classifier by projecting the training images into lower
dimensions. After classifier is trained, each test sample is pro-
jected onto the subspace obtained in the training process.

Next, we introduce an unsupervised multi-linear feature
extraction method for RDC. Assume that a set of training ten-
sor samples given as Xm ∈ RI1×I2...×IN . In the same spirit
as goal of standard PCA, our objective is to find a matrix sub-
space Ũ(n) ∈ RPn×In that projects the original tensor into a
low dimensional tensor subspace Ym ∈ RP1×P2...×PN (with
Pn ≤ In). Note that, MPCA scheme generalizes the standard
PCA and 2D-PCA algorithms. For N = 1, MPCA reduces
to standard PCA and for N = 2, MPCA is equivalent to the
2D-PCA [16]. We seek to maintain as much as possible vari-
ations present in the projected data and minimize the recon-
struction error [22]. Original tensor data can be approximated

Fig. 3: Visualization of a noisy falling RDC data before and
after e-CLEAN

as a multi-linear transformations of a core tensor subspace,
Ym, by the subspace matrices, U(n), as

X̃m ≈ Ym ×(1) U
(1)T ×(2) U

(2)T ...×(N) U
(N)T (6)

This expression can be defined in an equivalent form as

X̃m ≈ [Ym; U(1)T ,U(2)T , ...,U(N)T ] (7)

Using the same idea of n-mode unfolding and tensor multi-
plication, the core tensor subspace can be also expressed as

Ym = [Xm; U(1),U(2), ...,U(N)] (8)

To find the best approximation, X̃m, provided by the core
tensor and subspace matrices, a suitable cost function is re-
quired. This can be achieved by minimizing the Frobenius
norm, ‖.‖F, of the difference between the given data tensor
and its approximation defined as

Ũ(n) = arg min
U(n)

M∑
m=1

∥∥Xm − [Ym; U(1)T ,U(2)T , ...,U(N)T ]
∥∥2
F

subject to U(n) ×U(n)T = I, n = 1, 2, ..., N
(9)

By expanding the Frobenius norm while keeping the sub-
spaces orthonormal, the objective function can be further ex-
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Table 1: Pre-defined features
(Accuracy: 87.87%)

Fall Non-fall

Fall 82.03 17.97
Non-fall 6.29 93.71

Table 2: 17 projection standard PCA
(Accuracy: 86.01%)

Fall Non-fall

Fall 79.79 20.21
Non-fall 7.76 92.24

Table 3: 5 projection MPCA
(Accuracy: 97.88%)

Fall Non-fall

Fall 96.62 3.38
Non-fall 0.86 99.14

pressed as

Ũ(n) = arg min
U(n)

M∑
m=1

∥∥Xm∥∥2F − ∥∥X̃m∥∥2F (10)

Since the computation of the approximation is multi-linear, it-
erative optimization of (10) can be solved through a sequence
of linear subproblems using alternating least squares (ALS),
whereby the least squares of the cost function is optimized for
one mode at a time, while keeping the other mode subspace
matrices fixed. Because the cost function is solved using an
iterative process, we need an initialization subspace. In this
work, the initial subspace matrix, U(n)∗ , is constructed ran-
domly, then updated at the each step of the ALS according to
the Frobenius norm. Finally, the feature tensor is obtained by
projecting the original tensor using optimized subspace, Ũ(n),
as

Ỹm = [Xm; Ũ(1), Ũ(2), ..., Ũ(N)] ∈ RP1×P2...×PN (11)

Note that, the dimensionality of the core tensor subspace,
Pn, is assumed to be known or predetermined. The effect of
the Pn is shown in Section 5 in terms of classification accu-
racy.

5. EXPERIMENTAL RESULTS

Extensive data measurements were conducted to demonstrate
the contribution of the RDC-based MPCA for fall detection.
Operating parameters of the ultra-wide band (UWB) radar
system that used in the experiments are, transmitting fre-
quency 25 GHz, sampling frequency 1 kHz, and bandwidth
of 2 GHz. The dataset contained four human motions: falling
(109), sitting (105), bending (95), and walking (76). Each
activity was recorded for a duration of 10 seconds, for 6 dif-
ferent subjects and 4 different aspects angles, yielding a total
of 385 data samples. Each subject performed each type of
motion at 0◦, 22.5◦, 30◦, and 45◦. Experiments were col-
lected in Radar Imaging Laboratory at Villanova University.

In the classification stage, a k-Nearest Neighbors (kNN)
classifier with k = 3 was employed. 70% of the recorded
signals were used to train the classifier, whereas the remain-
ing 30% were used as testing. The selection of the training
and testing sets were carried out in a randomly fashion. In
total 1000 Monte Carlo trials were performed to evaluate the
performance of the 3 considered algorithms.

Fig. 4: Dependency of classification accuracy on different
number of projections employed in standard PCA and MPCA

Another important question raised in subspace analysis
concerns with the number of components (features) needed
in the final system. The classification accuracies of standard
PCA and MPCA are provided in Figure 4 for different number
of projections used. These results clearly show the benefit of
this analysis as both algorithms yield their best performance
at a relatively small number of features, and do not exhibit
much improvements afterwards. The confusion matrices for
the three algorithms are provided in Tables 1 through 3. The
average classification accuracies for manually extracted pre-
defined features, standard PCA, and MPCA are determined
to be 87.87%, 86.01%, and 97.88%, respectively. The MPCA
produces the lowest number of missed detections and highest
fall detection at a rate of 96.62%. In essence, MPCA perfor-
mance is drastically higher than that achieved with existing
commonly used algorithms, proving the importance of RDC.

6. CONCLUSION

In this paper, we proposed a radar data cube (RDC)-based
multi-linear subspace method for fall detection. Utilization
of RDC offers an effective way to combine motion infor-
mation from individual domains to capture cross-correlations
and inter-dependency. The proposed subspace method bene-
fits from a single representation utilizing the entwined rela-
tionship between the fast-time, slow-time, and Doppler fre-
quency and their corresponding joint-variable domains. In
employing kNN as the classifier, we demonstrated that, in-
troduced multi-dimensional PCA method outperforms those
based on standard PCA and manually extracted features.
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