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ABSTRACT
We study in this article the asymptotic performance of spectral
clustering with inner product kernel for Gaussian mixture models
of high dimension with numerous samples. As is now classical in
large dimensional spectral analysis, we establish a phase transition
phenomenon by which a minimum distance between the class means
and covariances is required for clustering to be possible from the
dominant eigenvectors. Beyond this phase transition, we evaluate
the asymptotic content of the dominant eigenvectors thus allowing
for a full characterization of clustering performance. However, a
surprising finding is that in some particular scenarios, the phase
transition does not occur and clustering can be achieved irrespective
of the class means and covariances. This is evidenced here in the
case of the mixture of two Gaussian datasets having the same means
and arbitrary difference between covariances.

Index Terms— Spectral clustering, inner product kernels, random
matrices, random matrix theory.

I. INTRODUCTION
One of the most important tasks in unsupervised machine learning

is clustering where a set of objects is grouped in similarity classes [1].
Clustering is mainly performed using a (weighted or unweighted)
graph describing the similarities between these objects. When the
graph nodes are themselves the objects of interest, the problem
is known as community detection on graphs [2]; otherwise the
construction of the graph adjacency matrix K is based on a kernel
operator f and the similarity between items xi and xj is given by
Kij = f(xi,xj), often taken under the form Kij = f

(
‖xi−xj‖2

)
or Kij = f(xT

i xj) for some function f [3]. One of the prominent
methods for clustering from K, known as spectral procedures [4]
consists in performing a Principal Component Analysis (PCA) on
the dominant eigenvectors (presumably containing all the useful
information about the data) of the symmetric normalized Laplacian
matrix L = D−

1
2 KD−

1
2 (with D the degree matrix)1.

In the era of big data, important amounts of data have to
be processed, the dimensions of which usually scale with their
number. Consistency of spectral clustering of numerous data but
with finite fixed dimension has been shown in [5]. However, the
behavior of spectral methods in the simultaneously high dimensional-
numerous data regime can be strikingly different from the low
dimensional-numerous data scenario. In particular, it was shown
in [6] through a deeper study of the Laplacian matrix L with the
Euclidean norm based kernel similarity Kij = f(‖xi−xj‖2), that
in the aforementioned high dimensional regime, the performances
of spectral clustering for Gaussian mixture vectors only depend on
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1The symmetric normalized Laplacian is usually defined in the literature
as L = In−D−

1
2 KD−

1
2 but using the eigenvectors corresponding

to smallest eigenvalues of In−D−
1
2 KD−

1
2 is equivalent to using the

eigenvectors corresponding to the largest eigenvalues of D−
1
2 KD−

1
2 .

a local behavior of the kernel function as a result of a concentration
of measure effect of the kernel matrix entries. This in turn changes
the classical viewpoint on optimal choices of kernel functions.

We study in this article spectral clustering with the other common
kernel similarity Kij = f(xT

i xj) which induces simpler and
more interpretable insights than the previously studied kernel
similarity Kij = f(‖xi−xj‖2). The behavior of the eigenvalues
and eigenvectors of data driven kernel matrices being inacessible,
we consider as in [6] a data model composed of Gaussian mixtures.
As shown in [6], this is not an undesirable model since an extremely
close fit in performances is obtained for real datasets (in [6] with
the MNIST database) when compared to Gaussian mixture inputs
generated using the same empirical means and covariances as the
real data. As in [6], we exhibit a phase transition below which
spectral clustering is not better than random guess and beyond
which non trivial performances can be obtained. For a Gaussian
mixture model, this is to say that a minimum distance between
means and covariances is required to obtain non vanishing correct
classification rates. However, a surprising finding of our study is
that in some specific scenarios, under a carefully chosen kernel
function, this phase transition is always reachable in the sense
that it is possible to recover the data classes from the dominant
eigenvectors even for arbitrary small differences between clusters
means and covariances.

Notation: Vectors are denoted with lowercase boldface letters
and matrices by boldbace uppercase letters. The norm ‖.‖ stands for
the Euclidean norm for vectors and the operator norm for matrices.
The vector 1n ∈ Rn stands for the vector filled with ones. The
Dirac mass is δx.

II. MODEL AND MAIN RESULTS
Consider n independent data vectors x1, . . . ,xn ∈ Rp belonging

to a mixture of k Gaussian distributions C1, . . . , Ck such that
for xi ∈ Ca, xi = µa+

√
pwi, for some µa ∈ Rp and wi ∼

N (0, p−1Ca), with Ca ∈ Rp×p non negative definite. We assume
without loss of generality that the vectors are ordered by classes
i.e., xn1+···+na−1+1, . . . ,xn1+···+na ∈ Ca for a = 1, . . . , k.

We assume that both p and n grow large at the same rate.
Assuming that the data are well separated, i.e. the differences in
means ‖µa−µb‖ and the differences in covariances ‖Ca−Cb‖
between clusters is sufficiently large, any classical spectral clustering
with a basic kernel function should be capable of separating the
data asymptotically without error. It is thus interesting to understand
the appropriate kernel choices capable of separating the data in
more challenging scenarios. To this end, we consider the following
assumptions for which clustering is not asymptotically trivial.

Assumption 1 (Growth rate). As n→∞, p/n→ c0 > 0, na
n
→

ca > 0. Furthermore,
1) For µ◦ =

∑k
a=1 caµa and µ◦a = µa−µ◦, ‖µ◦a‖ = O(1).

2) For C◦ =
∑k
a=1 caCa and C◦a = Ca−C◦, ‖Ca‖ = O(1)

and trC◦a = O(√p).
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3) 1
p
trC◦ converges to τ > 0.

For subsequent use, we introduce the following notations

M , [µ◦1, · · · ,µ◦k] ∈ Rp×k

T ,

{
1

p
trC◦aC

◦
b

}k
a,b=1

W , [w1, . . . ,wk] ∈ Rp×n

J , [j1, · · · , jk] ∈ Rn×k

P , In−
1

n
1n1Tn ∈ Rn×n

with ja ∈ Rn the canonical vector of cluster Ca defined by (ja)i =
δxi∈Ca .

We shall work with the inner product kernel similarity matrix
defined as

K
∆
=

{
f

(
(x◦i )

Tx◦j
p

)}n
i,j=1

with x◦i = xi− 1
n

∑n
i=1 xi and f statisfying the following condi-

tions. Note that, here K takes a more general form i.e., it might
not necessarily be positive semi-definite.

Assumption 2 (On the kernel function). The kernel function f is
three-times continuously differentiable in a neighborhood of 0 with
f(0) > 0 and f ′(0) 6= 0.

Following the popular Ng-Weiss-Jordan method [7], our objective
is to precisely characterize the eigenvalues and eigenvectors of the
Laplacian matrix L = D−

1
2 KD−

1
2 with D = diag(K1n) in order

to get insights on the performances of the clustering problem. As
the matrix L has highly dependent entries, we use the technique
in [6] to find an equivalent random matrix for which the spectral
analysis is more accessible. Under the model and assumptions
defined above, we notice that all the off diagonal elements of K
converge asymptotically to f(0) and the diagonal elements to f(τ).
This means that at the first order, K is a rank one matrix not
containing any class information which may suggest that spectral
clustering will not perform better than random guess. However,
pushing to next orders by Taylor expanding the individual elements
around their limiting points allows to recover the class means
and covariances information. This is the main motivation behind
Assumption 2 allowing to expand the function f.

The vector D
1
2 1n is a trivial eigenvector of L associated with

the eigenvalue 1 and can be shown not to contain any information
about the classes. We shall thus remove its eigenspace from L to
study the other eigenvalues which are unknown so far. We thus
study instead the matrix

L′ = n

(
D−

1
2 KD−

1
2 −D

1
2 1n1T

n

1T
nD1n

)
which has the same eigenvalues and eigenvectors as L but for the
pair (1,D

1
2 1n) eigenpair of L which becomes (0,D

1
2 1n) for L′.

The matrix L′ having dependent entries, we proceed to the Taylor
expansion of the individual entries to get a Taylor approximation
of the whole matrix by controlling the different matrix norms by
orders of magnitude and only keeping non-vanishing terms. All
calculus made, we obtain the following equivalent approximation
of the normalized Laplacian matrix.

Theorem 1. Let Assumption 1 and 2 hold true. Let L̂′ be given
by:

L̂′ =
f ′(0)

f(0)

(
PWTWP+VBVT

)
+F (τ)P

where

B =

[
MTM+ f ′′(0)

2f ′(0)
T Ik

Ik 0

]
V =

[
J
√
p
,PWTM

]
and F (τ) = f(τ)−f(0)−τf ′(0)

f(0)
. Then,∥∥∥L′−L̂′
∥∥∥ a.s.−→ 0.

As a direct consequence of Theorem 1, the eigenvalues of L′

are linearly mapped to the eigenvalues of L = f(0)
f ′(0)

L′+F (τ) =

PWTWP+VBVT with the same eigenvectors. As far as spectral
clustering is concerned, we can therefore focus in the sequel on
L instead of L′. Interestingly, L is equivalent to a spiked random
matrix of an information (VBVT ) plus noise (PWTWP) type [8].
Classical spike random matrix analysis [8] suggest that whenever
the noise energy dominates the information energy, no information
can be retrieved, but there exists a phase transition (point where the
information becomes predominant) beyond which the information
can be retrieved with success rate better than random guess. We
see in particular that when f ′(0) = 0, L is essentially the low
rank matrix JTJT containing only information about the clusters
covariances meaning that we cannot discriminate the data upon
their means. To avoid the latter limitation, we focus rather on the
case f ′(0) 6= 0 thus motivating Assumption 2. From a spectral
theory point of view, the eigenvalues of spiked random matrices
concentrate in bulks (representing the noise) but for a few isolated
ones (which can be at either side of the bulks) and the eigenvectors
associated with those isolated eigenvalues are correlated to the
eigenspace of the information matrix as long as the energy in the
latter is sufficiently large. A precise look at Theorem 1 allows us
to expect that the eigenvectors associated with isolated eigenvalues
will be correlated to J (containing the cluster indicator vectors)
all the more that there is sufficient energy in the matrices M and
T (containing statistical information about the classes). From a
practical point of view, beyond this phase transition, a spectral
clustering algorithm using the isolated eigenvectors should be able
to recover the classes with performances better than chance. The
following result provides a precise characterization of the isolated
eigenvalues of the normalized Laplacian matrix associated to an
inner product kernel matrix.

Theorem 2 (Isolated eigenvalues). Let Assumption 1 and 2 hold
true. For z ∈ C, define the k×k matrix Gz as:

Gz =

 f ′′(0)
2f ′(0)

T+MT

(
Ip+

k∑
a=1

caga(z)Ca

)−1

M

Γz+Ik

where

Γz = diag {caga(z)}ka=1−

{
caga(z)cbgb(z)∑k

i=1 cigi(z)

}k
a,b=1

and g1(z), . . . , gk(z) are the unique solutions with Im[gi(z)] > 0
when Im[z] > 0, to the system

1

c0ga(z)
= −z+1

p
trCa

(
Ip+

k∑
a=1

caga(z)Ca

)−1

.

Let ρ be at a macroscopic distance from the eigenvalue support
of PWTWP and be such that Gρ has a zero eigenvalue with
multiplicity mρ. Then, there exist λj ≥ · · · ≥ λj+mρ−1 eigenvalues
of L such that:

|λj+i−ρ|
a.s.−→ 0.
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The result in Theorem 2 is difficult to interpret since the functions
ga(z) are defined through an implicit equation. To get more insights
on the different positions of the isolated eigenvalues and on the
performances of kernel spectral clustering in the regime under study,
we consider in the next section a simple case where the expressions
are more amenable to interpretation.

III. SPECIAL CASE
We study in this section scenarios of practical interest from

which new insights about kernel spectral clustering are derived.
We assume that the data vectors are drawn from a mixture of two
well balanced Gaussian datasets (i.e., c1 = c2) with means µ1,
µ2 respectively and random positive definite covariances C1, C2

identically distributed, unitarily invariant and hence asymptotically
free (see [9] for discussion and asymptotic freeness) such that the
empirical distribution of their eigenvalues converge to a common
law ν. This is the case for instance when C1 and C2 are two
random independent and identically distributed Wishart matrices.
Under this setting, g1(z) = g2(z) = g(z) with

g(z) =

(
−zc+ c

2

∫
t

1+ 1
2
g(z)t

ν�ν(dt)

)−1

the Stietjes transform [10] of a probability measure with compact
support S and ν�ν is the additive free convolution of ν with itself.

Focusing on the location of isolated eigenvalues (hereafter called
spikes), the limiting spikes ρ satisfy from Theorem 2 det(Gρ) = 0
with

Gρ = I2+g(ρ)

(
f ′′(0)

8f ′(0)
T+

MTM

4

∫
[ν�ν(dt)]

1+ 1
2
g(ρ)t

)(
1 −1
−1 1

)
.

This expression follows from using the fact that the
Ca’s are drawn from unitarily invariant distributions

so that MT
(
Ip+

g(ρ)
2

∑k
a=1 Ca

)−1

M−
∫

1

1+ 1
2
g(ρ)t

ν�

ν(dt)MTM
a.s.−→ 0 from the trace Lemma (see e.g., Theorem 3.12

in [11]). The limiting spikes are thus the ρ’s for which the rank one
matrix Gρ−I2 has eigenvalue −1. This is equivalent to saying that
the non zero eigenvalue tr(Gρ−I2) of the latter rank-one matrix
is exactly −1. After calculations, we thus get that the limiting
isolated eigenvalues ρ should satisfy

θg(ρ)+δmν�ν(−
2

g(ρ)
)+1 = 0 (1)

where

θ =
f ′′(0)

8f ′(0)

1

p
tr(C1−C2)

2

δ =
‖µ1−µ2‖22

2

and mν�ν is the Stieltjes transform of ν�ν.
Several interesting insights can be readily extracted from (1). Let

us first consider separately the limiting cases of δ = 0 (equal means
across classes) and tr(C1−C2)

2 = 0 (equal covariances across
classes). When δ = 0, it follows from (1) that a spike appears
at location ρ outside the bulk once θ is set to − 1

g(ρ)
. From this

we deduce that, quite surprisingly, any location ρ outside of the
eigenvalues bulk can asymptotically be the value of some spike.
This can be made possible by choosing the kernel function f so that
θ = − 1

g(ρ)
. Since we are placing ourselves in the case where class

means are equal, such a finding goes against the usually encountered
phase transition phenomenon by which we expect that a minimum
distance between the class means and covariances is required to
allow isolated eigenvalues showing up. This, however, should only
occur theoretically when p and n are quite large so that a good
match is obtained between the inner-product kernel Laplacian matrix
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Fig. 1: Histogram of the eigenvalues of L with p = 1000, n = 3000, k = 2,
c1 = c2, C1,C2 i.i.d from Wishart distribution with parameters ( 1

p Ip, p, 2p),

‖µ1−µ2‖22 = 0.5, f = 1+2x+20x2: A right-hand side spike appears when θ
is largely positive.

and its random equivalent; simulations for finite not too large p
and n suggest otherwise. On the other hand, if tr(C1−C2)

2 = 0
suggesting equal covariances across classes, it appears that the
choice of the kernel has asymptotically no impact on clustering
performances, as it is asymptotically inconsequential to the spikes
location or their appearance. The relevant parameter for clustering
tasks is the distance between the means, captured by the parameter
δ. From (1), it entails that clustering is asymptotically possible only
when − 1

δ
belongs to the set

{
mν�ν(− 2

g(ρ)
), ρ /∈ S

}
.

Having studied these two limiting cases, let us now focus on the
general case δ 6= 0 and tr(C1−C2)

2 6= 0. Equation (1) shows that
a spike at location ρ should satisfy:

mν�ν

(
− 2

g(ρ)

)
= −1

δ
− θg(ρ)

δ
(2)

which can be geometrically interpreted as the intersection between
the graph of g 7→ mν�ν(− 2

g
) with the line g 7→ − 1

δ
− θg

δ
where

g belongs to {g(ρ), ρ /∈ S} . It is noteworthy to mention that θ
can take any value in R by acting upon the kernel function. Hence,
for any ρ outside the support S, it is always possible to tune θ
so that a spike at location ρ appears. This is a major piece of
information that can be used in practice to favor the appearance of
the most-informative spikes for clustering tasks.

In the same vein, our analysis shows that contrary to what
practitioners are used to assuming, a spike can appear either on the
left or on the right-hand sides of the main bulk. This observation
becomes all the more interesting that in many realistic situations
only left-hand side spikes carrying clustering information appear. In
such circumstances, algorithms that rely on the largest eigenvalues
of kernel Laplacian matrices (D−

1
2 KD−

1
2 ) would yield very low

performances. Let us further investigate the role of θ on that aspect.
Since ρ→ g(ρ) is a Stieltjes transform, g(ρ)→ 0+ as ρ→ −∞
and g(ρ)→ 0− at ρ→ +∞ and investigating (2), we can expect
large negative θ to be consistent with the appearance of left-hand
side spikes while large positive θ should allow the appearance of
right-hand side spikes. To validate this statement, we represent in
Figure 1 and Figure 2 the histograms of the eigenvalues of the kernel
random matrix L when C1 and C2 follow Wishart distribution
Wp(

1
2p

Ip, p, 2p) where p = 1000, n = 3000, ‖µ1−µ2‖22 = 0.5

with the polynomial kernel functions f(x) = 1+2x+20x2 and
f(x) = 1+2x−15x2. C1 and C2 are thus independent, identically
distributed and unitarily invariant, hence asymptotically free.
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Fig. 2: Histogram of the eigenvalues of L. Same setting as Figure 1 but for f =
1+2x−15x2: A left-hand side spike appears when θ is largely negative.

When a spike appears at location ρ, the associated eigenvector
ûρ will look like noisy step functions. By using statistic interchange-
ability within the classes, we can write

û = α1
j1√
n1

+α2
j2√
n2

+σ1ω1+σ2ω2 (3)

where ω1 and ω2 are unit norm vectors supported respectively on
the indices of class C1 and C2 and are orthogonal to respectively j1
and j2. The scalars α1, α2 capture the alignment of the eigenvector
to the class step vectors j1 and j2 while the σ1 and σ2 can be
seen as the class standard deviations of the eigenvector fluctuations
around j1√

n1
and j2√

n2
. Assume δ = 0, and consider the eigenvector

ûρ associated with a spike at location ρ outside the limiting support
S. As said, this suggests that θ is related to ρ through the relation
θ = − 1

g(ρ)
. The following result shows that the scalars (αi)

2
i=1

ans (σi)
2
i=1 associated with that eigenvector can be approximated

as follows.

Theorem 3. Assume δ = 0. Let ρ be an isolated eigenvalue of L
and ûρ its associated eigenvector decomposed as (3). Then, for
θ = − 1

g(ρ)
,

(αi)
2 =

1

2
− c0

2

∫
t2

(2θ−t)2 ν�ν(dt)+o(1)

(σi)
2 =

1

2

[
1−
∫

c0t
2

(2θ−t)2 ν�ν(dt)
]

×

[(
1−c0−

∫
4c0θ

t−2θ ν�ν(dt)−
∫

4c0θ
2

(t−2θ)2 ν�ν(dt)
)−1

−1

]
+o(1).

We validate Theorem 3 by representing in Figure 3 the eigenvector
associated with the left hand side eigenvalue of L when f =
1+2x−20x2 and n = 3000, p = 1000. We note a good match
between the theoretical findings with the empirical ones, showing
the potential of our results in characterizing the statistical behavior
of spectral clustering.

This characterization can be very useful in practice. Consider the
situation in which clustering is performed based on the eigenvector
ûρ. Assuming Gaussian fluctuations on the individual entries of
the eigenvector, we can compute using Theorem 3 the asymptotic
clustering error probability, which interestingly does not depend
on how close the covariance matrices are, but on the location of
the spike ρ related to θ through θ = − 1

g(ρ)
. As such, one can

investigate whether the clustering performance could be enhanced

0 500 1,000 1,500 2,000 2,500 3,000
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Theory: eigenvector means

Theory: eigenvector standard deviations.

Fig. 3: Eigenvector corresponding to the leftmost eigenvalue of L̂ in Figure 2. Index
of the eigenvector (in the x-axis) are ordered by classes and the y-axis represent the
values corresponding to each index.

by optimizing over the most-informative spikes’ locations that are
associated with low clustering error probabilities. Such a direction
will be investigated in the future.

IV. CONCLUDING REMARKS
Our large dimensional spectral analysis of Laplacian kernel

random matrices yields the surprising finding that one can choose in
certain scenarios an appropriate kernel function allowing to get the
most informative eigenvector for clustering purposes. In addition,
assuming the classification of two Gaussian datasets with the same
means and arbitrary random covariances independent and identically
distributed, this kernel function could be chosen in such a way that
it allows to get an outlying eigenvalue and the minimum achievable
clustering error rate using the corresponding eigenvector. We believe
that such findings can be useful in practice in particular for the
choice of the eigenvector to use for classification which is not always
the one associated to the largest eigenvalue. A natural extension
of this work is to push forward this analysis for other cases of
practical interests in order to get a comprehensive understanding of
kernel spectral clustering.
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