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ABSTRACT

Non-negative Matrix Factorization (NMF) is a well estab-
lished tool for audio analysis. However, it is not well suited
for learning on weakly labeled data, i.e. data where the exact
timestamp of the sound of interest is not known. In this paper
we propose a novel extension to NMF, that allows it to extract
meaningful representations from weakly labeled audio data.
Recently, a constraint on the activation matrix was proposed
to adapt for learning on weak labels. To further improve the
method we propose to add an orthogonality regularizer of the
dictionary in the cost function of NMF. In that way we obtain
appropriate dictionaries for the sounds of interest and back-
ground sounds from weakly labeled data. We demonstrate
that the proposed Orthogonality-Regularized Masked NMF
(ORM-NMF) can be used for Audio Event Detection of rare
events and evaluate the method on the development data from
Task2 of DCASE2017 Challenge.

Index Terms— Non-negative Matrix Factorization, weakly
labeled data, Acoustic Event Detection

1. INTRODUCTION

Non-negative Matrix Factorization (NMF) is a popular tool
for discovering structure in a variety of signals. For many
years it has been widely used for analysis of musical audio
and more recently, of environmental sounds. Analysis of en-
vironmental sounds have recently received a lot of attention
in the research community due to its vast number of appli-
cations, ranging from audio content analysis, human activ-
ity monitoring, to surveillance and bioacoustic monitoring.
Among others, methods based on NMF have been success-
fully applied to several tasks of environmental audio analysis
such as audio scene classification [1], rare event detection [2]
or real life audio event detection [3]. NMF methods offer par-
simonious models with significantly fewer parameters than,
for instance, Deep Neural Networks (DNNs). Hence further
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investigating NMF is an interesting direction in the environ-
mental sound research.

NMF models the spectrogram V of a sound signal as a
product of a dictionary of spectral bases W and a correspond-
ing activation matrix H. The key strategy for NMF to effi-
ciently model the sounds of interest is to express them and
the background sounds by different sets of bases. It is eas-
ily achieved when we have access to isolated recordings of
sound of interest [2] or well annotated data, where the times-
tamps of the sounds of interest are known [3]. In that case,
we can extract the set of bases for the sound of interest us-
ing the isolated/annotated recordings and another set of bases
for the background sounds using the recordings of the noise.
However, in the real world scenario it is often easier to gather
weakly labeled data, that is, data in which we do not have ex-
act information of when the interesting sound occurs, but just
a tag of which sounds are present in a given audio excerpt.
It implies that we do not have access to the clean recordings
of the sound of interest: the training data contain parts with
background/noise only and parts with background and the tar-
get sound. Therefore, the task of expressing the sound of in-
terest and the background with different bases becomes diffi-
cult. In [4], inspired by the score informed source separation
approaches [5], we proposed a Masked NMF method, which
adapts NMF to the problem of learning meaningful bird sound
representations from such noisy, weakly labeled data. Using
the weak labels, we constrained parts of the activation matrix
to zero, hence obtaining more robust set of bases for sounds
of interest and noise.

Masked NMF proved successful for Bird Audio Detec-
tion [4], but we observed that often the background sounds
were reconstructed using the dictionary of bird sounds. That
suggests that constraining the activation matrix is not enough
to produce separate set of bases for the sound of interest and
the background sounds. Therefore, the difference between
the set of bases of the target sound and noise has to be in-
creased by “pushing” the subspaces of the bases apart from
each other. In this work, we propose to achieve this by intro-
ducing an orthogonality regularization term in the objective
function of NMF. Regularization of NMF has been proven
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useful in a number of application. For instance, a temporal
constraint improves audio source separation [6], sparsity has
been shown to improve NMF performance on real life audio
event detection [7] and co-occurrence constraint was used for
automatic music transcription [8]. In this paper, inspired by
the idea of forcing two dictionaries to be different originally
introduced for single channel source separation problem [9],
we propose to add an orthogonality regularizer, that decorre-
lates the two dictionaries and promotes orthogonality between
dictionaries of the sound and of the background, resulting in
the Orthogonality-Regularized Masked NMF (ORM-NMF)
method.

The paper is organized as follows. Sections 2 and 3 intro-
duce the standard NMF and Masked NMF respectively. Then,
in Section 4 we describe the proposed method and the derived
multiplicative update rules. Later we test the method on a rare
event detection task using weakly labeled data described in
Section 5. The results are presented in Section 6 followed by
the conclusions in Section 7.

2. NON-NEGATIVE MATRIX FACTORIZATION

The goal of NMF is to approximate a non-negative data
matrix, typically a time-frequency representation of a given
sound, V ∈ R+

F×T as a product of a dictionary W ∈
R+

F×K and its activation matrix H ∈ R+
K×T , such that:

V ≈ V̂ = WH. (1)

W and H are estimated to minimize some divergence met-
ric D(V|WH). For any two matrices X and Y, we define
D(X|Y) =

∑
m,nD(xmn, ymn). In this work we choose the

squared Euclidean distance as the divergence metric, defined
as

D(V|WH) = ||V−WH||2 (2)

although other error approximation functions, such as gener-
alized Kullback-Leibler (KL) divergence or Itakura-Saito (IS)
divergence [10] are also sensible choices and the proposed
method can be easily extended to use those. Euclidean dis-
tance can be minimized by alternately updating W and H by
the following multiplicative update rules [11]:

W←W� VHᵀ

WHHᵀ

H← H� WᵀV
WᵀWH

,

(3)

where A� B denotes a Hadamard (element-wise) product of
two matrices, A

B denotes Hadamard division and other multi-
plications are matrix multiplications.

3. MASKED NMF

In [4] we proposed to extend a standard NMF approach to
learning on weakly labeled data. To explain the idea, let us

consider the task of detection of rare sound events, as pro-
posed in the Detection and Classification of Acoustic Scenes
and Events challenge DCASE2017 [12]. Let y ∈ {0, 1} be a
weak label denoting absence or presence of the target sound,
V0 = V0

1, · · · ,V0
M0

is a set of M0 training examples with ab-
sence of the target sound and V1 = V1

1, · · · ,V1
M1

is a set of
M1 training examples with the presence of the target sound.
As the data is weakly labeled, examples containing the tar-
get sound most probably also contain noise and other sounds.
Therefore, we assume that to reconstruct well the target sound
training examples (V1) we also need elements from dictionar-
ies extracted from background sounds examples (V0). At the
same time, we do not expect elements of the dictionary atoms
of target sounds to be used for reconstructing V0. We impose
this constraint in the training phase by applying a binary mask
to the activation matrix as follows:

V = [V0,V1] ≈ [W0,W1]

([
1 1
0 1

]
�
[

H00 H01

H10 H11

])
= [W0,W1]

[
H00 H01

0 H11

]
=[W0H00,W0H01 + W1H11]

(4)
where W0 ∈ R+

F×K0

, W1 ∈ R+
F×K1

are “sound” and
“background” dictionaries respectively, K0 and K1 are their
corresponding ranks. 0 is a matrix of zeros with K1 rows
and the number of columns corresponding to the total size
of M0 background training data, while 1 denotes matrices of
appropriate dimensions with all elements equal to 1. H00,
H01, H10 and H11 are parts of the activation matrix of suitable
dimensions. Hence, we are seeking to minimize the Euclidean
distance:

min
W0,W1,H≥0

‖V−WH‖2

= ‖V0 −W0H00‖2 + ‖V1 −W0H01 −W1H11‖2
(5)

The masking is implemented through appropriate ini-
tialization of the activation matrix. As the update rules of
NMF are multiplicative, elements initialized with 0 remain 0
throughout the training. Hence, applying the multiplicative
rules from eq. 3 we obtain the dictionary:

W =
[
W0,W1

]
, (6)

that was later used for audio classification.

4. PROPOSED METHOD

Masked NMF, although suitable for audio classification task,
has some limitations. In previous experiments we have ob-
served that, in spite of the constraint on the activation ma-
trix, the background sounds were often reconstructed using
the dictionary of target sounds. It might suggest that the dic-
tionaries are correlated and hence, not discriminative between
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the target and background sounds. To overcome this prob-
lem we propose to add an additional orthogonality regularizer,
which decorrelates the dictionaries by “pushing” them apart
from each other. To achieve this, we measure the correlation
between the dictionaries W0 and W1 using the dot product
between them, i.e. ‖Wᵀ

1W0‖2, and aim to minimize it. The
emphasis, that is given to the orthogonality regularizer can
be adjusted by choosing an arbitrary value of λ. Combining
the constraint on the activation matrix and the orthogonality
regularizer results in the following cost function to minimize:

min
W0,W1,H≥0

‖V−WH‖2 + λ‖Wᵀ
1W0‖2

= ‖V0 −W0H00‖2 + ‖V1 −W0H01 −W1H11‖2

+ λ‖Wᵀ
1W0‖2

(7)

As ‖Wᵀ
1W0‖2 is convex in W0 and W1, we can minimize the

cost function using the gradient decent. Then, following the
derivations of Lee and Sung [11], we obtain the correspond-
ing multiplicative update rules for W0 and W1:

W0 ←W0 �
V1H01

ᵀ + V0H00
ᵀ

W0H01H01
ᵀ + W1H11H01

ᵀ + λW1W1
ᵀW0

W1 ←W1 �
V1H11

ᵀ

W0H01H11
ᵀ + W1H11H11

ᵀ + λW0W0
ᵀW1

(8)

As the regularizer does not influence the activation matrix H,
the update rule for H remains the same as in the original NMF
problem formulation shown in Section 2:

H← H� WᵀV
WᵀWH

. (9)

5. EXPERIMENTAL SETUP

The proposed method is evaluated on the task of Detection
of rare sound events using only weakly labeled data from the
audio recordings of the TUT Rare Sound Events 2017. The
dataset was provided for Task 2 of the DCASE2017 chal-
lenge [12]. All audio files are resampled to sampling rate of
16000 Hz in order to reduce the dimensionality of the data.
We extract perceptually motivated mel-spectrograms with
40 components, using a window size of 64 ms, hop size of
the same duration. Mel-spectrograms are a common choice
for representation of environmental audio [13, 1]. In order
to model temporal dynamics of environmental sounds we
choose a spectro-temporal representation of the data, which
is achieved by grouping several consecutive frames into 2D
patches, also known as shingling. In our experiments, we set
the number of consecutive frames to 4, the value that was
chosen empirically.

5.1. Dataset

The dataset consists of around 100 isolated sound examples
for three target classes: gunshot, baby crying and glass break-

ing, together with background audio which is part of the TUT
Acoustic Scenes 2016 dataset [14]. For the scenario of audio
event detection using weakly labeled data we do not use the
isolated recordings for training but we create mixtures with
the background audio of equal loudness, i.e. with the 0dB
Signal to Noise Ratio (SNR). Each mixture is 4 second long.
It is important to reiterate, that we do not know the times-
tamp of the event in the mix, just a binary label determining
weather the mix contains the sound of interest. We evaluate
the method on two scenarios:

• Vanilla scenario We use 100 test mixtures of 4 sec-
ond length. The mixtures are created using sound event
and background recordings not used in training dataset,
mixed with equal loudness (0dB SNR).

• Challenge scenario We use 500 mixes of -6dB, 0dB
and 6dB SNR of the sounds and backgrounds not used
in the training set. The testing mixtures are provided
by the organizers of the DCASE2017 challenge. Each
testing mixture is 30 second long.

Table 1 shows the number of isolated recordings used to cre-
ate training and testing mixtures. Equivalent number of audio
files not containing the sound was used for training as well as
testing in the vanilla scenario.

Table 1. Experimental dataset. Number of sound recordings
per class used for training and testing.

Event type training testing
Gunshot 134 53
Glass breaking 96 43
Baby crying 106 42

5.2. Event detection

We use the proposed method and the Masked NMF to extract
dictionaries W0 and W1. In the event detection phase, a test
sample is decomposed using the trained dictionaries as fol-
lows:

Vtest =
[
W0,W1

] [H0

H1

]
(10)

Finally, H1 is binarized using a threshold equal to 50%
of the maximum value of the entire activation matrix (H0 and
H1) . The columns of the binarized H1 that are greater than 0
indicate the presence of the event.

5.3. Evaluation metrics

To evaluate the method we use metrics used in the DCASE2017
challenge, i.e. event-based error rate (ER) and event-based
F-score. An event is considered correctly detected using
onset-only condition with a collar of 500 ms. The ER is
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calculated by adding the number of substitutions, insertions
and deletions for each class before dividing it by the total
number of events. The F-score is computed as the harmonic
mean between precision and recall based on the total amount
of false negatives, true positives and false positives per class.
We refer the reader to [15] for more details and explanations
about these metrics.

6. RESULTS

The parameters of the system, namely K0, K1 and λ were
chosen empirically during the development of the method and
set constant throughout the experiments to allow for a mean-
ingful comparison. The parameters were chosen to be: K0 =
50, K1 = 10 and λ = 1000.

6.1. Vanilla scenario

We compare the proposed method with the Masked NMF ap-
proach. We can see that for 4 seconds chunks of audio with 0
dB SNR

Table 2. Evaluation results in Vanilla Scenario. Error Rate
(ER) and F-score (F1) are reported for the proposed method
and Masked NMF.

Event type Proposed Masked NMF
ER F1 ER F1

Gunshot 0.26 87.5% 0.30 86.4%
Glass
breaking 0.21 89.4% 0.18 90.9%

Baby
crying 0.85 51.3% 0.92 51.8%

6.2. Challenge Scenario

To show that the method has a potential to be used in more
complicated scenarios, we evaluate the trained models on the
official development data of the DCASE2017 Challenge. Ta-
ble 3 shows the results for the proposed method, Masked
NMF and the DCASE2017 baseline.

Table 3. Evaluation results in Challenge scenario. Error Rate
(ER) and F-score (F1) are reported for the proposed method,
Masked NMF and DCASE2017 baseline.

Event type Proposed Masked NMF DCASE
ER F1 ER F1 ER F1

Gunshot 0.79 64.7% 0.81 64.2% 0.69 57.4%
Glass
breaking 0.87 50.1% 0.94 52.5% 0.22 88.5%

Baby
crying 0.97 39.1% 1.07 37.9% 0.67 72.0%

6.3. Discussion

The results in Table 2 show that the proposed method is a
promising way to learn on weakly labeled data. It is interest-
ing to see that the performance on gunshot and glass breaking
sounds is much higher than on baby crying sounds. This may
show that the proposed method is more suitable for detection
of impact than harmonic sounds. Moreover, separate parame-
ter tuning for each class could be beneficial. Further analysis
is needed to investigate the reasons for such a big difference.

The results in Table 3 confirm our findings using the
Vanilla scenario. The method performs well on the gunshot
detection, reasonably well on glass breaking detection and
much worse on baby crying detection. It has to be reiterated,
that the baseline for DCASE 2017 was using strongly anno-
tated data, hence we expected our method to perform worse,
as we allowed ourselves to use weakly labelled data only.

From both scenarios we can see that regularization lowers
the Error Rate, but F-score is not always increased. The rea-
sons for this behaviour need more investigation. However, it
can be concluded by analysing the results of the DCASE 2017
Challenge, that not always methods that achieve the lower ER
achieve higher F-score.

7. CONCLUSIONS

We proposed a novel method based on NMF for learning
sound representations on weakly labeled data. Adding a
constraint on the activation matrix and an orthogonality regu-
larizer to the standard NMF formulation we are able to learn
sound representations without isolated or strongly annotated
training data. Using the task of detection of rare events as an
example, we showed that the method is a promising direction
for Audio Event Detection when no isolated or annotated
sounds are present. However, the performance of the method
strongly depends on the type of target sound.

In future we plan to compare our method with other algo-
rithms tailored especially for weakly labeled data. Moreover,
we would like to understand better the influence of the pa-
rameters of the system and the reasons for a big discrepancy
of the results between different classes. Finally, we want to
compare iterative methods for decorrelating the dictionaries
with the proposed approach.
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