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ABSTRACT

Hyperspectral super-resolution (HSR) is a problem of recovering a
high-spectral-spatial-resolution image from a multispectral measure-
ment and a hyperspectral measurement, which have low spectral and
spatial resolutions, respectively. We consider a low-rank structured
matrix factorization formulation for HSR, which is a non-convex
large-scale optimization problem. Our contributions contain both
computational and theoretical aspects. On the computational side,
we develop three inexact block coordinate descent (BCD) schemes
that are empirically found to run many times faster than a state-of-
the-art method, which uses exact BCD. We achieve this by apply-
ing concepts in the proximal gradient (PG) and Frank-Wolfe (FW)
methods and by exploiting the HSR problem structures. On the the-
oretical side, we show that these inexact BCD schemes guarantee
convergence to a stationary point. In particular, the convergence re-
sult for a hybrid PG-FW inexact BCD scheme is new.

Index Terms— Hyperspectral super-resolution, inexact block
coordinate descent, convergence analysis

1. INTRODUCTION

In this paper we address a super-resolution (SR) imaging problem
arising from hyperspectral remote sensing. The problem is to recon-
struct a high-spectral-spatial-resolution image from a low-spectral-
resolution high-spatial-resolution measurement and a high-spectral-
resolution low-spatial-resolution measurement, acquired from a
multispectral (MS) sensor and a hyperspectral (HS) sensor, respec-
tively (resp.). We call this problem hyperspectral super-resolution
(HSR). Also called MS-HS data fusion in the literature, HSR is an
exciting and relatively new direction. It enables us to accomplish
HSR by computational techniques and using existing MS and HS
sensors, rather than building high-spectral-spatial-resolution sensors
which is known to be difficult [1–3].

There are several approaches to tackle the HSR problem [4, 5].
We will focus only on the low-rank structured matrix factorization
(SMF) approach in this paper. There are a variety of SMF formula-
tions and methods [6–10]; e.g., some use non-negative matrix fac-
torization (NMF), some apply `1-sparse or total variation regulariza-
tions, to name a few. In this work we consider the SMF formulation
used in [10]. It is a plain SMF model, with no regularization. It is
based on the widely used linear mixture model in hyperspectral re-
mote sensing. Despite its simplicity, this plain model has been found
to work well in practice. The state of the art, called FUMI [10],
adopts an exact block coordinate descent (BCD) strategy to tackle
the corresponding SMF problem. It focuses on deriving fast solvers
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for the exact BCD updates; the technique used is ADMM. We follow
a different strategy, namely, inexact BCD. The reason for us to con-
sider this direction is as follows: HSR is a large-scale problem, and
this means that it takes non-negligible computational time to exe-
cute one exact BCD update even though one has fast solvers at hand.
Thus, can we attempt computationally cheaper, but inexact, BCD
updates and see if this will lead to better computational efficiency?

In fact, the idea of inexact BCD is considered natural. Coupled
NMF [7], one of the early SMF methods for HSR, is reminiscent
of an inexact BCD in terms of ideas (although it is not BCD by
principle). Inexact BCD and relevant ideas have recently received
much interest in mathematical optimization [11–14]. Those studies
tend to consider theoretical issues for a wide class of problems, and
touch less on computational aspects which are often intimately re-
lated to structures of a specific problem. In this work we will develop
three inexact BCD schemes—which use the proximal gradient (PG)
method, the Frank-Wolfe (FW) method, and their hybrids to lever-
age on the underlying SMF problem structures for obtaining efficient
inexact updates. Such inexact BCD schemes were not considered in
the context of HSR, and our endeavor of handling the subsequent
computational issues is new. We will also consider theoretical issues
concerning convergence. As will be discussed further, our inexact
BCD schemes guarantee convergence to a stationary point of the
SMF problem. In particular, the convergence result for the hybrid
inexact BCD scheme is novel.

Our notations are largely standard. In addition, the ith column
of a matrix X is denoted by xi; λmax(A) denote the largest eigen-
values of a matrix A; ei denotes a unit vector with [ei]i = 1 and
[ei]j = 0 for all j 6= i; ιX denote the indicator function of a
set X , i.e., ιX (x) = 0 if x ∈ X and ιX (x) = ∞ if x /∈ X ;
ΠX (x) = arg minz∈X ‖z − x‖22 denotes the projection onto X .

2. PROBLEM STATEMENT

Let X ∈ RM×L be a spectral-spatial matrix of an image where M
and L denote the number of spectral bands and pixels, resp., and xij
records the spectral reflectance at spectral band i and pixel j. This
image has high spectral and spatial resolutions, and we will call it an
SR image in the sequel. The SR image is observed by an MS sensor
and an HS sensor, which have low spectral and spatial resolutions,
resp. This is illustrated in Fig. 1. Assuming that the measured MS
and HS images are co-registered, they are modeled as

YM = FX + VM, YH = XG + VH, (1)

where YM ∈ RMM×L and YH ∈ RM×LH denote the spectral-
spatial matrices of the MS and HS images, resp.; MM < M is the
number of spectral bands of the MS image; LH < L is the number
of HS image pixels; F ∈ RMM×M and G ∈ RL×LH are given ma-
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Fig. 1. Left: multispectral measurement of an SR image. Right: hyperspectral measurement of an SR image.

trices that model the spectral and spatial degradation effects of the
MS and HS measurements, resp.; VM and VH are noise.

The problem is to estimate X from YM and YH. To this end, we
adopt the structured matrix factorization approach in which the SR
image is assumed to follow a low-rank model

X = AS, (2)

where A ∈ RM×N ,S ∈ RN×L, N � min{M,L}. We also as-
sume the widely used linear mixture model (LMM) in hyperspectral
remote sensing, where a1, . . . ,aN model the spectral signatures of
endmembers (or materials) in the underlying scene, sij models the
proportion of contribution of endmember i at pixel j, and N is the
number of endmembers. In particular, A and S satisfy

A ∈ A := [0, 1]M×N , S ∈ S := {S | si ∈ UN , i = 1, . . . , L},

where UN = {s | s ≥ 0,1Ts = 1} denotes the unit simplex on
RN . Readers are referred to [10,15] for the modeling details. Given
a model order N , we intend to estimate (A,S), and thereby recover
X , by solving a data fitting problem

min
A∈A,S∈S

f(A,S) := 1
2
‖YM−FAS‖2F+ 1

2
‖YH−ASG‖2F . (3)

Our interest will be centered on how Problem (3) is handled compu-
tationally.

A straightforward strategy for tackling Problem (3), at least by
concepts, is to apply the following exact BCD

Sk+1 = arg min
S∈S

f(Ak,S), Ak+1 = arg min
A∈A

f(A,Sk+1) (4)

for k = 0, 1, . . . and given a starting point (A0,S0). It should
be mentioned that each subproblem in (4) is convex. In [10] the
authors developed an algorithm called FUMI, which uses custom-
derived ADMM solvers to solve the subproblems in (4). However,
we should note that the number of pixels L is often large in practice,
and consequently solving the S-update subproblem in (4) takes time
even with custom-derived solvers.

3. INEXACT BCD FOR HSR

We endeavor to improve on the state of the art by taking on an inexact
BCD strategy.

3.1. Inexact BCD by Proximal Gradient
Our first idea is to replace the exact BCD step (4) with proximal
gradient (PG) updates. Let us first review some basic concepts. Let

proxh(x) := arg min
z∈Rn

1
2
‖x− z‖22 + h(z)

define the proximal mapping of a function h. Consider an optimiza-
tion problem in form of

min
x∈Rn

f(x) + h(x),

where f is smooth and has Lipschitz continuous gradient ∇f(x);
h is convex, proper and closed. The PG iterations for handling the
above problem is

xk+1 = proxγkh

(
xk − γk∇f(xk)

)
, k = 0, 1, 2, . . .

where γk is the step size, and a standard step-size selection rule is to
choose γk as the reciprocal of the Lipschitz constant of∇f(x). For
instances where one uses h(x) = ιX (x) for some convex closed X ,
we have

proxγkh(x) = ΠX (x),

i.e., the proximal mapping is the projection onto X . Readers are
referred to the literature for further details [16].

To see how PG works here, rewrite Problem (3) as

min
A∈RM×N ,S∈RN×L

f(A,S) + ιA(A) + ιS(S).

Consider a combination of BCD and PG methods as follows:

Sk+1 = proxγS,kιS

(
Sk − γS,k∇Sf(Ak,Sk)

)
, (5a)

Ak+1 = proxγA,kιA

(
Ak − γA,k∇Af(Ak,Sk+1)

)
, (5b)

where γS,k and γA,k are step sizes; we will choose γS,k as the re-
ciprocal of the Lipschitz constant of ∇Sf(Ak,S) with respect to
(w.r.t.) S, and choose γA,k as the reciprocal of the Lipschitz con-
stant of ∇Af(A,Sk+1) w.r.t. A. The rationale is to replace the
exact BCD updates by inexact ones, thereby attempting to improve
computational efficiency.

The implementation details of (5) are as follows. We have

∇Sf(A,S) = (FA)T (FAS − YM) + AT (ASG− YH)GT ,

∇Af(A,S) = F T (FAS − YM)ST + (ASG− YH)(SG)T .

The proximal mapping proxγA,kιA
is simple: if we write Z =

proxγA,kιA
(W ), then zij = max{0,min{wij , 1}} for all i, j. The

proximal mapping proxγS,kιS
is more complex computationally. If

we write Z = proxγS,kιS
(W ), then

zi = ΠUN (wi), i = 1, . . . , L.

The above unit simplex projections do not have a closed form, but
they can be computed by an available algorithm [17] with a worst-
case complexity ofO(N log(N)). The Lipschitz constants required
for determining the step sizes are described in the following lemma.
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Lemma 1 Suppose A 6= 0.1 The Lipschitz constant of∇Sf(A,S)
w.r.t. S is

λmax

(
θGA

TA + (FA)T (FA)
)
,

where θG = λmax(GTG). Similarly, suppose S 6= 0. The Lipschitz
constant of∇Af(A,S) w.r.t. A is

λmax

(
θFSST + (SG)(SG)T

)
,

where θF = λmax(FF T ).

We skip the proof of Lemma 1 owing to space limitation. We should
mention that Lemma 1 is not a standard result and its proof requires
exploitation of the problem structures in (3). It is also an efficient
solution to compute the Lipschitz constants.

3.2. Inexact BCD by the Frank-Wolfe Method
Our second idea has the same spirit as the previous PG inexact BCD
scheme. The difference is that we replace the PG updates with the
Frank-Wolfe (FW) method:

Sk+1 = Sk + αS,k(P k
S − Sk), (6a)

Ak+1 = Ak + αA,k(P k
A −Ak), (6b)

where αS,k, αA,k ∈ (0, 1] are step sizes;

P k
S = arg min

Z∈S
〈∇Sf(Ak,Sk),Z〉, (7a)

P k
A = arg min

Z∈A
〈∇Af(Ak,Sk+1),Z〉 (7b)

are FW directions; see the literature for the details of FW [18]. We
determine the step sizes by exact line search

αS,k = arg min
α∈(0,1]

f(Ak,Sk + α(P k
S − Sk)), (8a)

αA,k = arg min
α∈(0,1]

f(Ak + α(P k
A −Ak),Sk+1). (8b)

A reason for considering the FW inexact BCD scheme is that the
FW method is “projection-free.” In the PG step in (5a), the proxi-
mal mapping requires us to perform unit simplex projections. This
results in a complexity ofO(LN log(N)). In the FW step in (6) and
(7), the operations are computationally simpler. It can be shown that

[P k
S ]i = ej?i , j?i = arg min

j=1,...,N
[∇Sf(Ak,Sk)]ji,

for i = 1, . . . , L. As seen above, the computations of P k
S do not

require floating point operations. Hence, the FW step with S is
cheaper than the PG step on a per-iteration basis. Also, the FW
direction of A in (7b) equals

[P k
A]ij =

{
0, [∇Af(Ak,Sk+1)]ij ≥ 0
1, [∇Af(Ak,Sk+1)]ij < 0

for all i, j. Furthermore, it can be shown that the step-size rule in (8)
has a closed form

αS,k=min

{
1,

〈∇Sf(Ak,Sk),Sk − P k
S 〉

‖Ak(P k
S − Sk)G‖2F + ‖FAk(P k

S − Sk)‖2F

}
,

αA,k=min

{
1,

〈∇Af(Ak,Sk+1),Ak − P k
A〉

‖(P k
A −Ak)Sk+1G‖2F + ‖F (P k

A −Ak)Sk+1‖2F

}
;

1Note that for the case of A = 0, which is rare in practice, we can choose
the Lipschitz constant as any positive number.

they are obtained by utilizing the convex quadratic structure of f .
It is interesting to compare the complexities of the FW and PG

updates. We carefully evaluated the complexities of each operation,
and summarize the results by means of big O w.r.t. L,N,M in Ta-
ble 1. Note that nnz(G) denotes the number of nonzero elements of
G; as the spatial degradation matrix, it has nnz(G) = O(LHB

2)
whereB is the width of the spatial point spread response (see Fig. 1).
We see that the FW updates are more efficient than the PG updates.

PG S-update (5a) O(LN(M + log(N)) +N · nnz(G) +N2M)
A-update (5b) O(LNM +N · nnz(G) +N2L)

FW S-update (6a) O(LNM +N · nnz(G))
A-update (6b) O(LNM +N · nnz(G))

Table 1. Big O complexities of the PG and FW updates.

3.3. Hybrid Inexact BCD

We can also consider a hybrid inexact BCD (HiBCD) scheme

Sk+1 = UDS(Ak,Sk), Ak+1 = UDA(Ak,Sk+1), (9)

where UDS is either the PG step in (5a) or the FW step in (6a); UDA
is either the PG step in (5b) or the FW step in (6b). For example, we
can use the PG step for A, but use the FW step for S to avoid unit
simplex projections.

3.4. Convergence Guarantees

Our development has been intuitive with an emphasis on compu-
tational aspects. Now we turn to fundamental issues. Our main
problem in (3) is non-convex. Despite such difficulty, it is useful
to understand whether our schemes have guarantees on convergence
to a stationary point. First, let us recognize two facts.

Fact 1 The PG inexact BCD scheme in (5) is an instance of an opti-
mization framework called block successive upper-bound minimiza-
tion (BSUM) [11]. It is also an instance of the block multiconvex op-
timization framework in [12]. Following the aforementioned frame-
works, (5) guarantees convergence to a stationary point of Prob-
lem (3).

Fact 2 The FW inexact BCD scheme in (6) is an instance of an
optimization framework called cyclic block conditional gradient
(CBCG) [13]. However, CBCG was developed for convex problems.

We skip the details of the above facts for conciseness. Our next
question is whether the HiBCD scheme also has the same or similar
convergence guarantees. The answer is yes.

Theorem 1 The HiBCD scheme in (9) guarantees convergence to a
stationary point of Problem (3). Also, its convergence rate, measured
by means of the FW gap [19, 20], is O(1/

√
k).

Theorem 1 is our result. The proof follows that of CBCG, and
the significant contribution of our result lies in extending the CBCG
analysis to include PG. Also, the result is not limited to Problem (3)
and applies to a wider class of problems. We should point out that
since both the PG inexact BCD scheme in (5) and the FW inexact
BCD scheme in (6) are instances of the HiBCD in (9), it follows that
the convergence guarantees in Theorem 1 apply to the PG and FW
inexact BCD schemes. We skip the proof in view of space constraint
and will reveal them in the journal version.
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Fig. 2. From left to right: (a) Washington DC RGB image, MSE maps of (b) FUMI, (c) PGiBCD, (d) FWiBCD and (e) HiBCD.

4. SIMULATIONS

In this section we provide numerical results to demonstrate the ef-
ficiencies of our inexact BCD schemes. For convenience, we will
call the PG inexact BCD scheme in (5) “PGiBCD”, the FW inex-
act BCD scheme in (6) “FWiBCD”, and the HiBCD scheme with
FW S-update and PG A-update “HiBCD”. The baseline algorithm
is FUMI (recall that FUMI is an exact BCD). The algorithm set-
tings of FUMI follow those of the original paper, except that we stop
the algorithm when its relative change of the objective value is be-
low 1e−4. The same stopping rule applies to the three inexact BCD
schemes. Also, all the algorithms are initialized by a hyperspectral
unmixing algorithm called SVMAX [21]; more specifically, we use
SVMAX to estimate A from the HS image YH, and use that esti-
mation to initialize the algorithms. We benchmark the algorithms by
runtime, the number of iterations used, peak SNR (PSNR) and spec-
tral angle mapper (SAM); see [5] for the definitions. The evaluation
of runtime was performed on a desktop computer with Intel Core i7
3.6GHz CPU and 16GB memory, and under MATLAB R2015a.

4.1. Synthetic Data Experiment

First, we consider synthetic data simulations. We set N = 9, L =
1002. At each simulation trial, the columns of A are randomly
selected from the USGS spectral signature library [22], which has
M = 224. The matrix S is randomly cropped from the abundance
map retrieved from the AVIRIS Cuprite dataset (which is a real HS
image); the retrieval is done by applying a hyperspectral unmix-
ing algorithm on the dataset. After obtaining A,S, we use (1)–(2)
to generate X,YM ,YH ; noise is randomly generated following an
i.i.d. white Gaussian distribution. The spatial degradation matrix G
corresponds to 11×11 Gaussian point spreading with variance σ2 =
1.72, followed by downsampling on every 4 pixels horizontally and
vertically. The spectral degradation matrix F corresponds to the
band-average relative spectral response of the LANDSAT specifi-
cation [23]. Subsequently we have (LH ,MM ) = (252, 6). For each
SNR point, we ran 100 independently generated trials to evaluate the
aforementioned performance measures on average.

The results are shown in Table 2. We observe that the recovery
performance of all the tested algorithms is similar; e.g., the differ-
ences of PSNRs of the tested algorithms are no greater than 1.3dB.

However, all the three inexact BCD schemes run faster than FUMI—
with FWiBCD and HiBCD being particularly fast.

Table 2. HSR Performance on the Synthetic Data
SNR Method Runtime (sec.) Iterations PSNR (dB) SAM (deg.)

20
FUMI 8.31± 1.75 214.44± 51.59 16.39± 0.41 16.72± 1.56

PGiBCD 3.41± 0.43 503.04± 62.81 17.68± 0.51 14.41± 1.61
FWiBCD 1.01± 0.09 164.30± 13.55 17.59± 0.49 14.58± 1.59
HiBCD 1.59± 0.18 272.40± 32.08 17.66± 0.51 14.46± 1.60

30
FUMI 15.80± 4.48 435.70± 125.92 22.72± 0.81 5.87± 0.75

PGiBCD 7.01± 0.96 1057.14± 140.57 24.33± 0.89 4.83± 0.71
FWiBCD 1.44± 0.20 237.12± 34.17 24.19± 0.85 4.90± 0.71
HiBCD 2.51± 043 434.34± 75.09 24.27± 0.87 4.86± 0.71

40
FUMI 19.45± 5.89 566.60± 181.69 32.41± 0.98 1.69± 0.25

PGiBCD 14.78± 3.25 2235.18± 496.21 33.02± 1.08 1.57± 0.25
FWiBCD 3.11± 0.53 515.12± 87.38 32.61± 1.04 1.65± 0.26
HiBCD 5.29± 1.07 932.14± 191.53 32.72± 1.05 1.63± 0.26

Table 3. HSR Performance on Washington DC dataset
Method Runtime (sec.) Iterations PSNR (dB) SAM (deg.)
FUMI 1162.53± 235.89 950.23± 194.31 41.24± 0.53 0.71± 0.05

PGiBCD 560.64± 18.84 2115.23± 71.34 46.88± 0.04 0.59± 0.01
FWiBCD 304.73± 9.71 1610.47± 51.01 41.34± 0.12 0.94± 0.01
HiBCD 310.52± 8.35 1689.94± 46.20 44.25± 0.09 0.89± 0.01

4.2. Semi-Real Data Experiment

Next, we consider a semi-real data experiment, following a standard
procedure called Wald’s protocol [24]. In short, we take a real HS
image as the SR image to perform the experiment. The image we
use is a 520 × 260 sub-image cropped from the Washington DC
image captured by HYDICE sensor [25]; it has M = 191 bands.
Fig. 2(a) shows the image. The settings for generating YH and YM
are identical to those of the last subsection. The SNR is set at 40dB.
We set the model order as N = 30.

Fig. 2 (b)–(e) show an instance of the mean square error (MSE)
maps of the algorithms. We see that they all yield low MSEs in gen-
eral, and thus perform HSR reasonably. Table 3 shows more results;
they are based on 50 trials. Again, the recovery performances of all
the algorithms are comparable, but the inexact BCDs are faster—
FWiBCD and HiBCD are almost 4 times faster than FUMI.

5. CONCLUSION

To conclude, inexact BCD schemes based on PG, FW and their hy-
brids were proposed to tackle SMF for HSR. Computational and
convergence issues were dealt with. Numerical results showed that
the proposed schemes have promising runtime performance.
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