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ABSTRACT
In this paper, we provide an approach to clustering relational

matrices whose entries correspond to either similarities or dissimilarities
between objects. Our approach is based on the value of information, a
parameterized, information-theoretic criterion that measures the change
in costs associated with changes in information. Optimizing the value of
information yields a deterministic annealing style of clustering with many
benefits. For instance, investigators avoid needing to a priori specify the
number of clusters, as the partitions naturally undergo phase changes,
during the annealing process, whereby the number of clusters changes in a
data-driven fashion. The global-best partition can also often be identified.

Index Terms—Clustering, relational clustering, information theory

1. INTRODUCTION
The clustering of vector-based data is a critical problem, as it is

encountered in many applications that involve analysis with little to
no prior knowledge about the data [1]. The clustering of similarity-
and dissimilarity-based relational data is also important [2]. A given
representation of objects may not be readily defined in terms of features
yet it can be characterized by the relationships between the objects
[3–5]. This type of representation is common in many fields, including
bioinformatics, computer vision, and psychology.

Regardless of the data representation, clustering is often formulated
by defining a cost function to be minimized. Traditional approaches for
optimizing these cost functions rely on coordinate descent to produce
partitions of the data. Such approaches tend to converge only to sub-
optimal solutions, as many of the cost functions are non-convex and
hence contain many local minima.

One way to circumvent becoming trapped in local minima during
clustering is to employ simulated annealing [6]. Simulated annealing
works by generating a sequence of random partitions. The decision to
accept a given partitions depends on the probability of the resulting
configuration. The cost is therefore not always always minimized in a
monotonic fashion. The process may iteratively jump from one local-best
solution to a region with a worse one.

In the limit, simulated annealing will eventually reach a global
minimizer. It requires a sufficiently slow cooling of parameters that
influence the sequence generation for this to occur, though. This slow
rate can be non-conducive for some applications.

Another option for avoiding local minima during clustering is to
rely on deterministic annealing [7]. Deterministic annealing bears some
resemblance to simulated annealing. It inherits some positive attributes
of simulated annealing. It is guaranteed to reach the global minimum,
for instance. This occurs despite replacing the random walk approach to
generatingpartitionswithanexpectation. It alsocomeswithotherbenefits.
For example, while an adjustment of parameter values is necessary during
the optimization process, the cooling rate can be much quicker than
in simulated annealing. This makes it attractive for many real-world
applications.

Due to its beneficial properties, deterministic annealing has been ap-
plied to the problem of clustering vector-based data. Several information-
theoretic clustering algorithms are given by Rose and his colleagues
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[8, 9]. In each of these frameworks, they obtained a parameterized,
Shannon-entropy-based [10] free-energy expression that describes the
quality of a particular partition. They have shown that the free energy
is minimized by the most probable set of cluster representatives at a
given parameter value. At high parameter values, there is only one local
minimum, which is global by default. This minimum corresponds to a
crisp partition where each vector-based data point belongs to a single
cluster. As the parameter value is lowered, more clusters emerge and
the cluster memberships become increasingly fuzzy. A hierarchy of
partitions, with decreasing average costs, is obtained as the process
undergoes a series of phase transitions. The annealing process tracks the
global minimum across each phase change.

While deterministic annealing has proved useful for clustering vec-
torial data, there has yet to be a formulation of it for clustering relational
representations. In this paper, we provide an information-theoretic for-
mulation [11] for such data types, which is the value of information due
to Stratonovich [12].

The value of information [13, 14] is a type of free-energy criterion
that describes the largest reduction in costs associated with a given
amount of information. In the context of clustering, the number of
groups is implicitly dictated by the information amount. High amounts
of information lead to a small number of clusters with many elements.
A potentially good qualitative partitioning of the relationships is often
observed in such cases. Lower amounts of information yield larger
number of clusters with fewer elements per cluster. The partitions can
be qualitatively poor, as clusters are unnecessarily split. Determining
the ‘right’ amount of information is therefore crucial.

When optimized, the value of information yields a deterministic
annealing process for updating the cluster memberships. A hierarchy
of partitions, corresponding to differing amounts of information, is
produced through the annealing process. Partitions from this hierarchy
that quantize the data well can be automatically identified through
analysis of a rate-distortion-like curve. This allows investigators to
sidestep needing to a priori specify the number of clusters. The cluster
count, and hence the ‘right’ amount of information, is determined in
a data-driven fashion. Our approach does not require manually setting
any parameters, which is a novelty of our method compared to existing,
vector-data-based deterministic annealing clustering schemes.

Unlike the approaches given by Rose et al. [8, 9], the value of
information relies on Shannon mutual information [10], not Shannon
entropy. The resulting partition update equations therefore contain extra
terms that account for the cluster population statistics. These additional
terms lead to more qualitatively appealing partitions of the data. They also
avoid producing coincident clusters as the annealing process undergoes
phase changes. The approaches of Rose et al. sometimes yield coincident
clusters; this would also occur if we extended their work to the relational-
data case, which we show.

2. METHODOLOGY
Our approach for relational clustering can be described as follows.

Given a relational-matrix-based representation of a weighted graph, we
seek to partition it to produce a reduced-size graph, which we refer to
as an accumulation matrix. The vertices in the accumulation matrix are
are analogous to cluster prototypes in the vector-data case. There is a
one-to-many mapping of a vertex from the accumulation matrix to the
vertices of the relational matrix. The edges of the accumulation matrix
codify the relative dissimilarity between pairs of prototypes.
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There are many possible accumulation matrices that can be formed
for a given relational matrix. We would like to find one that minimizes
some distortion measure. But, due to the different sizes of the relational
and accumulation matrices, defining a distortion is difficult. We therefore
specify how to construct a so-called composite matrix, that sidesteps
this difficulty, and define an appropriate distortion between it and the
original relational matrix. We provide an objective function for finding
the optimal accumulation matrix from both the composite matrix and
the relational matrix.

We also encounter another issue: uncovering the optimal accumula-
tion matrix is not trivial due to the binary-valuedness of the one-to-many
mappings. We relax the binary assumption and offer an alternate objec-
tive function, which is based on the value of information. Optimization
of the value of information yields a deterministic annealing process
for finding part of the accumulation matrix. In the limit, the solution
of deterministic annealing approaches the global solution of the origi-
nal objective function. A hierarchy of possible partitions, each with a
different number of clusters, are produced as intermediate solutions.

2.1 Preliminaries
In what follows, we rely on the concept of a relational matrix. A

relational matrix is an adjacency-based representation of a directed
graph.

Definition 1.1. A relational matrix R is a matrix Rn×n+ given by
(Vπ, Eπ,Π), where Vπ is a set of n vertices, Eπ is a set of edge
connections between all pairs of vertices, and [Π]i,j = πi,j , are
positive, symmetric, reflexive weights assigned to the graph edges.
The subscripts on the vertices and edges represent the dependence
on the particular weight matrix.

For any relational matrix, we define the notion of an outgoing vector
πi,1:n=[πi,1, . . . , πi,n] for the ith vertex by its weights on the outgoing
edges. We assume that πi,j =0 in the outgoing vector if and only if there
is no directed edge from the ith vertex to the jth vertex.

The outgoing vectors provide basis of comparison between vertex
pairs. If two relational matrices, Rπ and Rϕ are of the same size, then
this comparison can be performed on πi,1:n and πj,1:n according to a
measure g : Rn+ × Rn+ → R+. If, however, they are of different sizes,
then a composite matrix must be formed so that the distortion between
the two matrices can be assessed.

Definition 1.2. A partition function ψ is a mapping between two
index sets such that ψ−1(Z1:m) is a partition of Z1:n. That is,
ψ−1(j)⊂Z1:n, ψ−1(j) ∩ ψ−1(k) =∅, for j 6=k, and ψ−1(1) ∪
. . . ∪ ψ−1(m)=Z1:n.

It can be seen that a partition induces a binary accumulation
matrix [Ψ]i,j =ψi,j , where ψi,j =1 if i∈ψ−1(j) and ψi,j =0 if
i /∈ψ−1(j). Therefore, [Ψ]1:n,k=

∑
i∈ψ−1(k) ei, where ei is the

ith unit vector.
Definition 1.3. Given relational matrices (Vπ, Eπ,Π), with n
vertices, and (Vϕ, Eϕ,Φ), with m vertices, Rϑ is the composite
relational matrix (Vϑ, Eϑ,Θ), which satisfies the conditions

(i) The vertex set Vϑ=Vπ ∪Vϕ is the union of all vertices in
Rπ and Rϕ. For simplicity, the composite vertex set is indexed
such that the first m nodes are from Rϕ and the remaining n
nodes are from Rπ .

(ii) The edges in Rϑ are one-to-many mappings from
the vertices in Rϕ to the vertices in Rπ . Each vertex in
Rϕ represent groups of vertices from Rπ . Although Rϑ has
m+ n vertices, we can represent its weighting matrix by
Θ = [ϑ>1,1:m, ϑ

>
2,1:m, . . . , ϑ

>
m,1:m]>. The outgoing vectors

ϑi,1:n are of the same direction as πi,1:n.
(iii) The partition function ψ provides an accumulation rela-

tion between the edge weights ofRϕ andRϑ, which is given by
ϕj,k=

∑
i∈ψ−1(k) ϑj,k, ∀j, k.

Note that, for our application, the two relational matrices will almost
always be of different sizes. The first matrix, Rπ , will be the matrix
specified by an investigator. The accumulation matrix, Rϕ, will essen-
tially be a partitioning ofRπ . The objects ofRϕ correspond to relational

cluster prototypes; the weights ofRϕ correspond to prototype-prototype
distances. Each object in Rπ will map to some prototype in Rϕ.

We can now assess the distortion of anyRπ andRϕ. First, we define
the weighted distance between corresponding outgoing vectors of Rπ
and the composite matrix Rϑ assigned by the partition ψ,

n∑
i=1

p(i)g(πi,1:n, ϑψ(i),1:n).

Here, p(i) are a set of weights, which can be viewed as probabilities.
We then use this weighted distance to define the quantization distortion
between Rπ and Rϕ, which is

q(Rπ, Rϕ) = min
Rϑ∈R

m×n
+

(
n∑
i=1

p(i)g(πi,1:n, ϑψ(i),1:n)

∣∣∣∣∣Rϑ∈Rπϕ
)

where Rπϕ is the set of all composite matrices for Rπ and Rϕ. This
objective function is over all possible sets of binary partitions.

Suppose that we have a relational matrix Rπ ∈Rn×n+ . We would
like to find another relational matrixRϕ∈Rm×m+ that provides a coarse
representation of Rπ . Rϕ is referred to as an accumulated relational
matrix.

Definition 1.4. Suppose that we have a relational matrix Rπ =
(Vπ, Eπ,Π) with n vertices, where the weight matrix is given
by Π = [π>1,1:n, π

>
2,1:n, . . . , π

>
n,1:n]>. An accumulation rela-

tional matrix is given by another relational matrix Rϕ =
(Vϕ, Eϕ,Φ) that has m vertices, with a weight matrix Φ =
[ϕ>1,1:m, ϕ

>
2,1:m, . . . , ϕ

>
m,1:m]>, m≤n. An accumulation

relational matrix satisfies

arg min
Ψ∈Rn×m

+ , Rϕ∈Rm×m
+

(
q(Rπ, Rϕ)

∣∣∣∣∣ [Ψ]1:n,k=
∑

i∈ψ−1(k)

ei

)
,

for the positive distortion measure q : Rn×n+ × Rm×m+ → R+

given above.
It is immediate that at least one minimizer for this function exists, since
the number of possible binary partitions is finite. Due to the binary
nature of the partitions, finding an accumulation relational matrix has
an NP-hard computational complexity.

2.2 Partitioning Relational Matrices
We hence seek approximately optimal accumulation relational ma-

trices that are more computationally tractable to produce. To do this, we
decompose the optimization problem in definition 1.4, which is outlined
by the following definition.

Definition 1.5. Suppose that we have a relational matrix Rπ =
(Vπ, Eπ,Π) with n vertices, where the weight matrix is given
by Π = [π>1,1:n, π

>
2,1:n, . . . , π

>
n,1:n]>. Suppose that we also

have a composite relational matrix Rϑ = (Vϑ, Eϑ,Θ) with
n + m vertices, where the weight matrix is given by Θ =
[ϑ>1,1:m, ϑ

>
2,1:m, . . . , ϑ

>
m,1:m]>.

An accumulation relational matrix Rϕ=(Vϕ, Eϕ,Φ) that has
m vertices, can be constructed in a two-step fashion:

(i) Vertex grouping: Solve the optimization problem given
in (1) for the positive distortion measure q given above. This has
the effect of partitioning the n vertices of the relational matrix
Rπ into m groups. To each group, a representative super-vertex
is ascribed such that the average pairwise distance between a
vertex and a super-vertex is minimized.

(ii) Edge aggregation: ObtainRϕ from the following expres-
sion:ϕj,k=

∑
i∈ψ−1(k) ϑj,k using the optimal weightsϑi,j and

partition matrix Ψ from step (i).
To address the vertex grouping problem in the first step, we utilize the

value of information. The value of information is an information-theoretic
criterion originally proposed by Stratonovich. We have previously shown
how it can be used for addressing the exploration-exploitation problem
in reinforcement learning [15–17]. We have also demonstrated that using
the value of information leads to a clustering of the state-action space
according to the value function.
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arg min
Ψ∈Rn×m

+ , Rϑ∈R
m×n
+

(
n∑
i=1

p(i)g(πi,1:n, ϑψ(i),1:n)

∣∣∣∣∣Rϑ∈Rπϕ, [Ψ]1:n,k=
∑

i∈ψ−1(k)

ei

)
(1)

min
P∈Rm×n

+

(
minj

(
n∑
i=1

p(i)g(πi,1:n, ϕj,1:m)

)
−

(
n∑
i=1

m∑
j=1

p(i)p(j|i)g(πi,1:n, ϕj,1:m)

)∣∣∣∣∣ϕj,k=

n∑
i=1

ϑi,kp(j|k)

)
(2)

For the problem of clustering relational data, the value of information
can be used to quantify the expected amount of decrease in the matrix-
matrix distortion associated with changes in information. Information,
in a clustering context, corresponds to how finely we are partitioning
the data. Low amounts of information correspond to many clusters and
fuzzy cluster memberships. High amounts of information correspond a
single cluster and crisp cluster memberships. The choice of the ‘right’
amount of information for a given dataset, and hence the number of
clusters, can be made automatically by processing a rate-distortion-like
curve that relates the distortion of Rπ and Rϕ to information.

We utilize the value of information, given in (2), to induce a soft
partitioning of the relational matrix. This leads to the notion of a soft
accumulation matrix.

Definition 1.6. Suppose that we have a relational matrix Rπ =
(Vπ, Eπ,Π) with n vertices, where the weight matrix is given
by Π = [π>1,1:n, π

>
2,1:n, . . . , π

>
n,1:n]>. A soft accumulation rela-

tional matrix is given by another relational matrix Rϕ=(Vϕ,
Eϕ,Φ) that has m vertices, with a weight matrix Φ=[ϕ>1,1:m,
ϕ>2,1:m, . . . , ϕ

>
m,1:m]>, m≤n. A soft accumulation relational

matrix satisfies (2), where [P ]j,i=p(j|i) is a set of non-negative
association weights that take values over the unit interval. Such
weights are subject to a Shannon mutual information constraint(

n∑
i=1

n∑
j=1

p(i)p(j|i)log p(j|i)

)
−

(
n∑
i=1

n∑
j=1

p(i, j)log p(j)

)
≤ r

where r≥0 is a user-specified parameter.
The problem of finding soft accumulation matrices is specified by the
above constrained optimization problem. To effectively solve this prob-
lem, we form the Lagrangian and differentiate it. This provides a grouped
coordinate descent procedure for specifying the non-negative association
weights.

Proposition 1.1. For a given relational matrixRπ , the accumulation
relational matrixRϕ can be found from the non-negative association
weights determined by the following alternating updates

p(j)←
n∑
i=1

p(i)p(j|i),

p(j|i)← p(j)e−βg(πi,1:n,ϑj,1:m)

/
m∑
j=1

p(j)e−βg(πi,1:n,ϑj,1:m),

which are iterated until convergence. Here, β≥ 0 is a Lagrange
multiplier that emerges from the Shannon mutual information
constraint.

The variable p(j) corresponds to the cluster population statistics.
Substituting the association weights from proposition 1.1 into the

Lagrangian yields

F (Rπ, Rϑ) = − 1

β

n∑
i=1

p(i)log

(
m∑
j=1

e−βg(πi,1:n,ϕj,1:m)

)
.

At each grouped-coordinate descent iteration, the Lagrange multiplier β
is fixed and a local minimum of the Lagrangian is found. That is, the
representative outgoing vectorsϑj,1:m are computed using the following
implicit equation

∇ϑj,1:mF (Rπ, Rϑ) =

n∑
i=1

p(i)p(j|i)∇ϑj,1:mg(πi,1:n, ϑj,1:m) = 0.

This equation can be solved using gradient descent methods where the
solutions from the previous iterations are used as the starting values for

the current iteration. These computations are repeated as the multiplier
β is increased, leading to an annealing-like process. For small values
of β, this procedure finds the global minimum of the Lagrangian. This
minimum is tracked as β is iteratively increased.

The effects of β are as follows. As β tends to zero, minimizing the
Lagrangian is approximately same as minimizing the negative Shannon
information. Shannon information is known to be convex and hence has
a global minimizer. In this case, the weights are approximately uniform,
p(j|i)≈m−1 ∀i, j, so all outgoing vectors ϑj,1:m are coincident. There
are hence many clusters, and every object in Rπ has the same fuzzy
membership to each cluster.

As β is increased, the soft accumulation matrix becomes more crisp.
Smaller number of clusters are formed. Moreover, the annealing process
exhibits a series of phase transitions where the outgoing vectors ϑj,1:m

are insensitive to changes in β except at critical values. The number of
distinct outgoing vectors in the composite relational matrix increases
at these critical values. When β approaches infinity, the information
constraint is essentially ignored. Thus, minimizing the Lagrangian is
the same as minimizing the relational-matrix distortion q between Rπ
and Rϕ. We therefore obtain an almost-crisp partition, p(j|i)≈1 ∀i, j.
We also begin to recover the relational-matrix distortion function over
binary partitions. This crisp partition contains only a single cluster.

Determining Number of Clusters. Our approach to clustering re-
lational matrices entails iterating over a range of β values from small to
large. Each value of β between two critical values leads to accumulation
matrices that define partitions with different number of clusters. This
entire process yields a hierarchy of partitions.

Investigators are often interested in obtaining only a single partition,
containing the ‘right’ number of clusters, that ‘best’ fits the observations.
We hence consider an automated heuristic of choosing a parsimonious
partition from the hierarchy that is produced.

Our heuristic is based on comparing the amount of information r
against the relational-matrix dissimilarity between Rπ and Rϕ. Such a
comparison leads to a rate-distortion like curve, which often contains a
knee-like region for some moderate information amount. Our studies
have shown that partitions around the knee region often qualitatively
partition the data well with few to no unnecessary clusters. A good
partition in this region can be easily detected via:

(i) Iterating over each point along this curve. For each point, we
fit two linear functions that bisect it: one of which is a least-squares
fit to the part of the curve that is to the left of the bisector and one
that is fit to the part of the curve to the right.

(ii) Finding the point that leads to the lowest sum of least-
squared errors for the two linear functions, which almost always
corresponds to the knee. The partition corresponding to this amount
of information r (as quantified by β) is returned.

3. EXPERIMENTS
To assess our approach, we consider three relational datasets from

real-world applications. We have previously analyzed these datasets in
[18, 19], in the context of relational cluster validity.

(i)RGD-30: This data was formed from a combination of cDNA
microarray gene expressions and gene ontology similarities of 30
genes related to cell apoptosis in human lymphomas.

(ii)RHGP-194: This data was constructed by applying gene ontol-
ogy similarity measures to 194 human gene products. The data are
composed of three groups or 21, 86, and 87 gene products from the
myotubularin, receptor precursor, and collagen alpha chain protein
families, respectively.

(iii)RATA-198: This data was created from a combination of gene
ontology similarity and microarray gene expressions on 198 genes
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Figure 1: Deterministic annealing clustering results for three datasets: RGD-30,
RHGP-194, and RATA-198. For each row, the first plot is the relational matrix of
dissimilarities. Dark colors correspond to low dissimilarity, while lighter colors
correspond to higher dissimilarity. The second and third plots are the crisp
partitions returned for out method when using Shannon mutual information and
Shannon entropy, respectively, to specify the constraint for the value of
information (VOI) criterion. We converted the fuzzy partitions to crisp partitions
for display purposes. The fourth plot provides a rate-distortion curve which
compares the free-energy magnitude to the amount of information. We converted
the information amount to the number of clusters to ease interpretations of these
plots. Circles in these plots are provided to highlight the number of clusters
chosen by our automated knee-detection heuristic.

from the Arabidopsis Thaliana plant. The plant was subject to a
variety of stresses from insects and stress controls.

Note that the relationships for each of these datasets cannot be considered
as pairwise distances between latent set of vectors. They were generated
completely from similarity measures. We hence cannot expect to perform
multi-dimensional scaling [20, 21], to be able to apply vector-data
deterministic annealing clustering algorithms, without disrupting the
cluster structure [22].

3.1 Results and Discussions
We applied our clustering approach to the above three relational

datasets. Note that our approach has no parameters that must be manually
set. Corresponding results are presented in figure 1.

For each dataset, we thresholded the fuzzy association weights and
overlaid the resulting crisp partition on top of the relationships. We
expect to see these partitions segment the dark, blocky structures along
the main diagonal. These blocky structures correspond to compact, low-
dissimilarity object groups. Light values on the off-diagonal indicate
that these groups are well separated. We re-ordered the dissimilarities
according to the visual assessment of cluster tendency algorithm [23–25]
to better highlight the latent data structure.

In figure 1, we also provide results for the case where Shannon entropy
is used as a constraint for the free-energy criterion instead of Shannon
mutual information. This is a direct extension of Rose’s deterministic
annealing method for the relational-data case.

Clustering Results. For RGD-30 and RHGP-194, the value of informa-
tion with the Shannon mutual information constraint returned a fuzzy
partitions with c= 4 and c= 3 clusters, respectively. These partitions
are consistent with the dark blocks present along the main diagonal;
compact, well-separated clusters are therefore being properly identified.
As we explain in the online appendix1, this partitioning of genes best
aligns with their biological functionality.

RATA-198 was, comparatively, more challenging due to the sparse
nature of the gene relationships. There were genes that naturally grouped
into many small clusters that were compact and well-separated. A total

1https://www.dropbox.com/s/w2qhu63fvlz1otc/Sledge-ICASSP-2017-2col-
appendix.pdf?dl=0

of c=12 clusters were identified by our method. This partitioning aligns
with the visual interpretation of cluster structure according to the re-
ordered dissimilarity plot: compact, well-separated groups are properly
segmented. Some of these clusters also have biological significance, as
we explain in the online appendix.

The value of information with the Shannon entropy constraint re-
turned fuzzy partitions with c = 9, c = 12, and c = 24 clusters, re-
spectively, for RGD-30, RHGP-194, and RATA-198. This approach had the
tendency to over-segment the data. Objects that were slight outliers were
frequently assigned to a singleton cluster, which led to a large number of
‘unnecessary’ clusters. Coincident partitions were also returned, which
redundantly described the natural object groupings. Manually aggre-
gating these coincident clusters led to similar object groupings as the
mutual-information-constrained approach.

Cluster Validity Results. To quantitatively assess the goodness of
our results, we applied twenty relational cluster validity indices [18] to
the hierarchy of crisp and fuzzy partitions produced. These included the
generalized Dunn’s indices [26], modified Hubert’s statistics [27], and
the Xie-Beni index [28].

For RGD-30, almost every index selected c= 4 as the best estimate
for the number of clusters. For RHGP-194, a majority of these indices
chose c=3 as the best cluster count estimate. These results agree with
both the visual partitioning of the data and the corresponding knees of
the rate-distortion curves. We can hence conclude that our approach is
identifying the cluster structure well for these two datasets.

Some of the validity indices for RGD-30 favored partitions with c=6
or 7 clusters. Such partitions separated each of the genes in the bottom,
right corner of the relational matrix into singleton clusters. Likewise,
for RHGP-194, some indices selected partitions with c = 4 or c = 5.
These partitions identified the cluster sub-structure for the bottom-right
block. The conflicting findings for both datasets are not necessarily
incorrect, as there is biological evidence to support such partitions of
the data. However, such partitions do not lead to a parsimonious set of
well-separated clusters.

ForRATA-198 therewasnoclearvalidity indexconsensus.Someindices
favored c=6 or c=8 clusters, which is not completely consistent with a
visual inspection of the groups highlighted by the re-ordered relationships.
Other indices suggested that c=12 or c=14 clusters best describe the
data, which better aligns with our results. Our previous studies with this
data indicate that there are viable explanations for each of these cluster
counts.

4. CONCLUSIONS

In this paper, we have proposed a deterministic-annealing-based
approach to relational clustering. Our approach is based upon producing
a type of partition matrix, known as an accumulation matrix, that quan-
tizes the original relational matrix. We rely on an information-theoretic
criterion, the value of information, to specify a computationally feasible
procedure for finding globally optimal accumulation matrices. The value
of information trades off against the amount of information against the
quantization fit of the accumulation matrix to the original relational data.

Ranges of information amounts lead to different number of clusters.
The information amount also dictates the fuzziness of the partitions. Both
of these properties are data-dependent: the best values for one dataset
may not work for another. We hence provided a heuristic for choosing
the ‘right’ amount of information, and hence a parsimonious partition,
in a data-driven fashion; no parameters need to be set by investigators
when using our clustering approach. This heuristic performed well for
the complicated datasets that we considered.
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