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ABSTRACT

Designing systems that allow users to search sounds through
vocal imitation augments the current text-based search en-
gines and advances human-computer interaction. Previously
we proposed a Siamese style convolutional network called
IMINET for sound search by vocal imitation, which jointly
addresses feature extraction by Convolutional Neural Net-
work (CNN) and similarity calculation by Fully Connected
Network (FCN), and is currently the state of the art. However,
how such architecture works is still a mystery. In this paper,
we try to answer this question. First, we visualize the input
patterns that maximize the activation of different neurons
in each CNN tower; this helps us understand what features
are extracted from vocal imitations and sound candidates.
Second, we visualize the imitation-sound input pairs that
maximize the activation of different neurons in the FCN lay-
ers; this helps us understand what kind of input pattern pairs
are recognized during the similarity calculation. Interesting
patterns are found to reveal the local-to-global and simple-
to-conceptual learning mechanism of TL-IMINET. Exper-
iments also show how transfer learning helps to improve
TL-IMINET performance from the visualization aspect.

Index Terms— Neural network visualization, CNN,
Siamese style networks, vocal imitation, transfer learning

1. INTRODUCTION

Vocal imitation is a common behavior that people use voice to
mimic sounds. It is an effective way to convey ideas that are
difficult to describe by language. Designing computational
systems that allow users to search sounds through vocal im-
itation [1, 2] goes beyond the current text-based search and
enables novel human-computer interactions. It can also be
applied to many applications including movie and music pro-
duction, multimedia retrieval, and security and surveillance.

There are two main challenges in the design of vocal-
imitation-based sound search systems: 1) feature extrac-
tion: what features are appropriate to capture the similar-
ity/dissimilarity between vocal imitations and sound candi-
dates, given that humans tend to imitate different acoustic
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aspects for different sounds; 2) similarity calculation: how to
measure the similarity between imitation queries and sound
candidates, given that imitations and general sounds are pro-
duced by drastically different sound sources.

In [3], we proposed a Siamese style neural network called
IMINET for sound search by vocal imitation. It consists of 1)
two Convolutional Neural Network (CNN) towers for feature
extraction for vocal imitations (query) and sound candidates
(recording) respectively; and 2) a Fully Connected Network
(FCN) for metric learning that predicts the similarity between
the imitation and the candidate. This Siamese architecture
integrating feature learning and metric learning outperforms
existing systems that rely on hand-crafted features [4] and that
only perform feature learning [5].

However, the mystery of how such Siamese style archi-
tecture works for sound search by vocal imitation is still un-
known. Questions like what features are extracted from the
vocal imitations and sound recordings and what patterns in
imitation-recording pairs are recognized during metric learn-
ing need to be answered to give us deeper insights.

In this paper, we answer these questions by visualizing
the input patterns that maximize the activation of different
neurons of the network. From the visualization, we interpret
the patterns in imitations and recordings captured by their fea-
ture extractors, as well as patterns in imitation-recording pairs
captured by the FCN. There has been little work on network
visualization and interpretation, especially in the audio do-
main. In addition, to our best knowledge, no work exists on
visualizing networks that have multiple inputs.

Instead of the original IMINET, however, we visualize
a transfer learning boosted version named TL-IMINET [6].
TL-IMINET adopts a similar Siamese style framework, but
uses domain-specific networks for feature extraction. Specif-
ically, the imitation CNN tower uses a model designed for
spoken language classification [7], while the recording CNN
tower uses a model designed for environmental sound classi-
fication [8]. Both towers are pre-trained on their own tasks.
They are then fine-tuned together with the FCN on the tar-
get sound search task. This transfer learning process signifi-
cantly improves the performance and makes TL-IMINET the
new state of the art. The visualization techniques and findings
presented in this paper, however, can be well generalized to
other types of Siamese networks including IMINET.
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2. RELATED WORK

Query by vocal imitation belongs to the task of Query by Ex-
ample (QEB) [9]. QEB has been applied to sound related
applications like query by humming [10], query by beat box-
ing [11], cover song recognition [12], and spoken document
retrieval [13]. However, little work has been reported on gen-
eral sound search using vocal imitation queries.

Roma and Serra [14] designed a system that allows users
to search sounds on freesound.org by recording their own au-
dio, but no formal evaluation was reported. Blancas et al.
[1] built a supervised system using hand-crafted features [4]
and an SVM classifier to classify a vocal imitation query and
retrieve sounds in that class. The major limitation of super-
vised systems, however, is that they cannot retrieve sounds not
having training imitations. Helén and Virtanen [15] extracted
hand-crafted features from both query and sound samples and
measured the query-sample pairwise similarity on their fea-
ture distributions. In our previous work [2], we first proposed
a supervised system using a Stacked Auto-Encoder (SAE) for
automatic feature learning and an SVM for imitation classi-
fication. Considering the limitation of supervised systems,
we then proposed an unsupervised system called IMISOUND
[16], using the SAE for feature extraction and various kinds
of distances for query-sample similarity measure. However,
feature extraction and similarity calculation are independent,
suggesting that the extracted features may not work the best
with the distance measure. Therefore, we further proposed a
Semi-Siamese Convolutional Network called IMINET [3] to
tune feature extraction and metric learning together.

On another aspect, several methods for visualizing what a
network learns have been developed [17]. The most straight-
forward method is to visualize the activations of each layer
[18]. Another method is activation maximization [19], which
generates an input that maximally activate a certain neuron by
performing gradient ascent of the neuron activation w.r.t. the
input while keeping the filter fixed. A related technique is to
search for the inputs within a dataset that maximally activate
a neuron [20], which requires a large scale dataset including
extensive input patterns. These techniques, however, have not
been applied to audio signals, nor was it adapted for multiple-
input neural network structures like Siamese style networks.

3. THE TL-IMINET MODEL

TL-IMINET is improved from IMINET through transfer
learning. Its overall structure is shown in Figure 1. Different
from IMINET, the two towers for feature extraction do not
share the same structure. Instead, they adopt structures that
are specially designed for spoken language recognition (vo-
cal imitation tower) and environmental sound classification
(sound recording tower), respectively. Their input dimen-
sions are also different, accounting for the different types
of sounds they receive. Network weights of the two tower

Fig. 1. TL-IMINET structure. The imitation input is a log-
mel spectrogram with frequency range of 0-5 kHz, 4 seconds
long, frame and hop size both of 8.33 ms. The sound input is
also a log-mel spectrogram with frequency range of 0-22,050
Hz, 3 seconds long, frame and hop size both of 23 ms.

are pre-trained on their own source tasks, then fined tuned
together with the FCN on the sound search task.

3.1. Pre-training CNN Towers

Imitation Tower: Vocal imitations and speech utterances
are all human voices, therefore, we pre-train the imitation
CNN on a spoken language recognition task. We adopt a
network structure proposed in [7] and slightly modify it: we
use three convolutional layers, each followed by a pooling
layer. The number and size of filters and the pooling param-
eters are specified in Figure 1. We pre-train the network on
a 7-class (Dutch, English, French, German, Italian, Russian,
and Spanish) spoken language recognition task, using data
from VoxForge [21]. For each language, we use 8,000 speech
clips contributed by various users, 70% for training and 30%
for testing. Each speech clip is truncated to 4 seconds and
converted to a 39-band log-mel spectrogram with 8.33 ms
for both the frame size and hop size. Therefore, the log-mel
spectrogram has a dimensionality of 39 * 482. The 7-class
classification model achieves 69.8% accuracy.

Recording Tower: A sound search database may con-
tain various kinds of sounds, and a large portion are every-
day sounds. Therefore, we adopt an environmental sound
classification network structure [8] for the sound recording
tower. The structure is described in Figure 1. We train the net-
work on the same 10-class sound classification task using the
UrbanSound8K dataset [8] without data augmentation. The
dataset contains 8,732 labeled sound excerpts from 10 classes.
On the same 10-fold cross validation setup, we achieve 70.2%
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Table 1. MRR comparisons of TL-IMINET with the baseline.

Config. AI CS ED SS

Tied-IMINET 0.401 0.327 0.158 0.380
TL-IMINET (w/o pretrain) 0.397 0.309 0.225 0.377
TL-IMINET (w/ pretrain) 0.462 0.349 0.246 0.390

average accuracy, similar to the reported performance in [8].

3.2. Fine-tuning Entire Network

After pre-training the two CNN towers on their own source
tasks, we fine-tune them together with the FCN for our target
task: sound search by vocal imitation. To do so, we use the
VocalSketch Data Set v1.0.4 [22], which contains 240 sound
recordings with different sound concetps falling into 4 cate-
gories, namely Acoustic Instruments (AI), Commercial Syn-
thesizers (CS), Everyday (ED), and Single Synthesizer (SS).
with different concepts in total. Each recording has 10 vo-
cal imitations. We create 840 positive pairs and 840 negative
pairs of imitations and recordings from 120 sound concepts.
In a positive pair, the imitation was produced to imitate the
recording. In a negative pair, the imitation and the recording
have no relationship.

We employ the Stochastic Gradient Descent (SGD) algo-
rithm to minimize the binary cross-entropy between the pre-
dicted similarity (between 0 and 1) and the ground-truth label
(binary), where 1 and 0 denotes positive and negative pairs,
respectively. The learning rate is 0.01, learning rate decay is
0.0001, and momentum is 0.9. The batch size is 128. Training
is terminated after 30 epochs.

3.3. State-of-the-art Performance

We use the other 120 sound recordings and their vocal im-
itations of the VocalSketch Data Set v1.0.4 [22] to evaluate
TL-IMINET against existing models. We employ the same
experimental setup described in our previous work [3]. Mean
Reciprocal Rank (MRR) is adopted to evaluate the retrieval
performance in each category.

MRR ranges from 0 to 1 with a higher value indicating
a better sound retrieval performance. We report the aver-
age MRR across 10 runs of the system. In Table 1 we com-
pare it with our previous Tied-IMINET system [3], which was
the best model on this dataset. It can be seen that without
pre-training the CNN towers, TL-IMINET achieves a similar
MRR as Tied-IMINET on AI, CS and SS categories, and out-
performs Tied-IMINET on ED category. With pre-training,
the MRR value is significantly improved across all categories,
showing the benefit of transfer learning and that TL-IMINET
is the new state of the art based on our previous work [2, 16,
5, 3].

4. VISUALIZATION AND INTERPRETATION

4.1. Dual-Input Activation Maximization

We generate and visualize the input spectrograms that maxi-
mally activate each neuron [19]. This can be done by taking
the gradient of that neuron’s activation w.r.t. the input while
keeping the trained weights unchanged and updating the input
by gradient ascent from a random initialization. After con-
vergence, the updated input spectrogram can be interpreted
as what that neuron learns. For better visualization purposes,
ReLU activations in TL-IMINET are replaced by leaky ReLU
with a slope coefficient of 0.3 for negative inputs. This is to
prevent the zero gradient issue when the input value to the
ReLU activation is negative, which will cause the optimiza-
tion of the input data for certain neurons to be trapped.

1) CNN Neurons: Each CNN neuron receives the signal
from either the vocal imitation input or the sound recording
input, but not both. Therefore, we adopt the following objec-
tive function for gradient ascent:

argmax
x

(
∂(Acij − λ ‖x‖

2
)

∂x
(1)

where Acij is the activation of the i-th neuron in the j-th con-
volutional layer from imitation or recording tower, x is the in-
put pattern for either the imitation or recording tower. λ = 0.1
is a weighting factor to prevent x from being arbitrarily large.

2) FC Neurons: Each FC neuron receives the signal
from both the vocal imitation and sound recording inputs.
Therefore, we should actually visualize a pair of imitation
and recording inputs. This is different from the visualization
for Single-Input-Single-Output (SISO) networks. We adopt
the following objective function:

argmax
ximi,xrec

(
∂(Afij − λ ‖ximi‖2)

∂ximi
+
∂(Afij − λ ‖xrec‖

2
)

∂xrec
)

(2)
where Afij is the activation of the i-th neuron in the j-th
dense layer, ximi and xrec are the input patterns for imitation
and recording towers.

4.2. Visualization of Convolutional Neurons

We visualize the input patterns that maximize convolutional
layer activations for the recording tower in Figure 2. The imi-
tation tower visualization shares the similar patterns, and can
be accessed via: https://goo.gl/Y5ytv6.

For figure arrangement, columns from left to right repre-
sent the learned input patterns in Conv1, Conv2, and Conv3,
respectively. Rows show different network configurations.
The first row shows input patterns before network fine-tuning,
i.e., the network only trained on the UrbanSound8K for envi-
ronmental sound classification. The second row shows the
learned patterns of the network trained from scratch only us-
ing the VocalSketch dataset without pre-training. The last
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(a) Conv1: pre-training only (d) Conv2: pre-training only (g) Conv3: pre-training only

(b) Conv1: w/o pre-training (e) Conv2: w/o pre-training (h) Conv3: w/o pre-training

(c) Conv1: pre-training + fine-tuning (f) Conv2: pre-training + fine-tuning (i) Conv3: pre-training + fine-tuning
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Fig. 2. Recording tower input pattern visualization. Brighter
color represents higher energy.

row shows learned patterns after the complete process of pre-
training and fine-tuning. We only show 4 input patterns in
each layer due to space constraints.

The first column shows that input patterns with local
edge information activates Conv1 neurons the most. Only a
single stripe is observed in each input pattern. The second
column displays more texture-like features with horizontal,
vertical, and inclined stripes. For the third column, com-
plicated temporal-frequency patterns are observed, which
present global structures. Both Conv2 and Conv3 input pat-
terns have periodic stripes, but patterns in Conv3 are coarser.
For example, we observe vertical stripes in bottom left pattern
of (d) and bottom right pattern of (g), the period in Conv3 is
roughly 4 times larger than Conv2. This may be due to the
2*4 (4 in time) pooling effect after Conv2. Also interestingly,
in Conv3 some patterns represent harmonic structure, some
represent vertical stripes showing rhythmic patterns.

Besides, we find that pattern visualization with fine-
tuning is shaper and clearer compared with the ones with-
out fine-tuning, as comparing the first and third rows. For
those layers without pre-training, interesting patterns appear
locally. Also much finer patterns can be obtained with pre-
training by comparing patterns in the first/third row with the
second row. This suggests that prior knowledge from the
original UrbanSound8k dataset provides essential informa-
tion about various sound events, which is lacking from the
learning from VocalSketch data set itself. Further more, by
comparing the first and third row, after fine-tuning (the model
used for the third row is initialized by the weights learned in

(a) Visualization of imitation-sound pattern pairs that maximize 
neuron activations in FC1, w/o pretraining

(b) Visualization of imitation-sound pattern pairs that maximize 
neuron activations in FC1, w/ pretraining
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Fig. 3. Imitation-recording input pair pattern visualization in
FC1. Brighter color represents higher energy.

the first row), the input patterns are derived from pre-training,
but more variations and detailed structures can be observed.

4.3. Visualization of FC Neurons

The neuron in fully connected layer receives a pair of inputs,
and the receptive field of each neuron covers the entire input
ranges of both the imitation and recording. So we need to
find a certain imitation-recording pair to maximally activate
the neuron. In Figure 3, by selecting 2 neurons in FC1 that
the rest neurons can be well represented by, the corresponding
imitation-recording input pattern pairs are shown without and
with pre-training TL-IMINET respectively. Complete results
can be found on our webpage. By pre-training TL-IMINET,
much detailed structures from the pairs can be observed com-
pared with the configuration of without pre-training. In both
Figure 3(a) and (b), imitation and recording are alike to form
pairs that maximally activate the FC neurons.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we applied the activation maximization tech-
nique to visualize input patterns that maximize the activation
of different neurons of a Siamese style network. This net-
work, called TL-IMINET, was designed for sound search by
vocal imitation. It uses two towers of specialized Convolu-
tional Neural Networks (CNN) to extract features from vocal
imitations and sound recordings, which are pretrained by two
source task datasets respectively, then uses a Fully Connected
Network (FCN) to predict the similarity between the imita-
tion and the sound. Through visualization, we attempted to
gain insights about how such architecture works. Interesting
patterns are found to reveal the local-to-global and simple-
to-conceptual learning mechanism of TL-IMINET. Exper-
iments also show how transfer learning helps to improve
TL-IMINET performance from the visualization aspect. For
future work, we would explore sonifications that transform
generated spectrogram-like input patterns to audible sounds.
Also we would conduct subjective studies for our system.

2409



6. REFERENCES

[1] David Sanchez. Blancas and Jordi Janer, “Sound re-
trieval from voice imitation queries in collaborative
databases,” in Proc. Audio Engineering Society 53rd
International Conference on Semantic Audio, 2014, pp.
1–6.

[2] Yichi Zhang and Zhiyao Duan, “Retrieving sounds by
vocal imitation recognition,” in Proc. Machine Learning
for Signal Processing (MLSP), 2015 IEEE International
Workshop on, 2015, pp. 1–6.

[3] Yichi Zhang and Zhiyao Duan, “IMINET: Convolu-
tional semi-Siamese networks for sound search by vocal
imitation,” in Proc. Applications of Signal Processing to
Audio and Acoustics (WASPAA), 2017 IEEE Workshop
on, 2017, pp. 304–308.

[4] Geoffroy Peeters, Bruno L. Giordano, Patrick Susini,
Nicolas Misdariis, and Stephen McAdams, “The tim-
bre toolbox: Extracting audio descriptors from musical
signal,” The Journal of the Acoustical Society of Amer-
ica, vol. 130, no. 5, pp. 2902–2916, 2011.

[5] Yichi Zhang and Zhiyao Duan, “Supervised and unsu-
pervised sound retrieval by vocal imitation,” Journal
of the Audio Engineering Society, vol. 64, no. 7/8, pp.
533–543, 2016.

[6] Yichi Zhang, Bryan Pardo, and Zhiyao Duan, “Convo-
lutional siamese style neural networks for sound search
by vocal imitation,” (in preparation).

[7] Gregoire Montavon, “Deep learning for spoken lan-
guage identification,” in Proc. NIPS Workshop on deep
learning for Speech Recognition and Related Applica-
tions, 2009, pp. 1–4.

[8] Justin Salamon and Juan Pablo Bello, “Deep convolu-
tional neural networks and data augmentation for envi-
ronmental sound classification,” IEEE Signal Process-
ing Letters, vol. 24, no. 3, pp. 279–283, 2017.

[9] Moshe M. Zloof, “Query-by-example: A data base lan-
guage,” IBM Systems Journal, vol. 16, no. 4, pp. 324–
343, 1977.

[10] Asif Ghias, Jonathan Logan, David. Chamberlin, and
Brian C. Smith, “Query by humming: musical infor-
mation retrieval in an audio database,” in Proc. the 3rd
ACM International Conference on Multimedia, 1995,
pp. 231–236.

[11] Ajay Kapur, Manj Benning, and George Tzanetakis,
“Query-by-beating-boxing: Music retrieval for the DJ,”
in Proc. International Society for Music Information Re-
trieval Conference (ISMIR), 2004, pp. 170–177.

[12] Thierry Bertin-Mahieux and Daniel PW Ellis, “Large-
scale cover song recognition using hashed chroma land-
marks,” in Proc. Applications of Signal Processing to
Audio and Acoustics (WASPAA), 2011 IEEE Workshop
on, 2011, pp. 117–120.

[13] Tee Kiah Chia, Khe Chai Sim, Haizhou Li, and
Hwee Tou Ng, “A lattice-based approach to query-by-
example spoken document retrieval,” in Proc. the 31st
annual international ACM SIGIR conference on Re-
search and development in information retrieval, 2008,
pp. 363–370.

[14] Gerard Roma and Xavier Serra, “Querying freesound
with a microphone,” in Proc. the 1st Web Audio Confer-
ence (WAC), 2015.

[15] Marko Helén and Tuomas Virtanen, “Audio query by
example using similarity measures between probability
density functions of features,” EURASIP Journal on Au-
dio, Speech, and Music Processing, vol. 2010, no. 1, pp.
179303, 2009.

[16] Yichi Zhang and Zhiyao Duan, “IMISOUND: an un-
supervised system for sound query by vocal imita-
tion,” in Proc. Acoustics, Speech and Signal Process-
ing (ICASSP), 2016 IEEE International Conference on,
2016, pp. 2269–2273.

[17] “Understanding and visualizing convolutional neu-
ral networks,” http://cs231n.github.io/
understanding-cnn/, Accessed: 2017-09-30.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Proc. Advances in neural informa-
tion processing systems (NIPS), 2012, pp. 1097–1105.

[19] Dumitru Erhan, Aaron Courville, and Yoshua Bengio,
“Understanding representations learned in deep archi-
tectures,” Department d‘Informatique et Recherche Op-
erationnelle, University of Montreal, QC, Canada, Tech.
Rep 1355, pp. 1–25, 2010.

[20] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik, “Rich feature hierarchies for accurate ob-
ject detection and semantic segmentation,” in Proc.
Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, 2014, pp. 580–587.

[21] “VoxForge,” http://www.voxforge.org/, Ac-
cessed: 2017-09-30.

[22] Mark Cartwright and Bryan Pardo, “Vocalsketch: Vo-
cally imitating audio concepts,” in Proc. the 33rd An-
nual ACM Conference on Human Factors in Computing
Systems, 2015, pp. 43–46.

2410


