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ABSTRACT

We demonstrate a network visualization technique to analyze the re-
current state inside the LSTMs/GRUs used commonly in language
and acoustic models. Interpreting intermediate state and network ac-
tivations inside end-to-end models remains an open challenge. Our
method allows users to understand exactly how much and what his-
tory is encoded inside recurrent state in grapheme sequence models.
Our procedure trains multiple decoders that predict prior input his-
tory. Compiling results from these decoders, a user can obtain a sig-
nature of the recurrent kernel that characterizes its memory behavior.
We demonstrate this method’s usefulness in revealing information
divergence in the bases of recurrent factorized kernels, visualizing
the character-level differences between the memory of n-gram and
recurrent language models, and extracting knowledge of history en-
coded in the layers of grapheme-based end-to-end ASR networks.

Index Terms— Long-short term memory, interpretability, re-
current state visualization, grapheme sequence models

1. INTRODUCTION

Recurrent neural networks such as LSTMs and GRUs achieve state-
of-art performance in a variety of sequence-based tasks, such as lan-
guage modeling [1], acoustic modeling [2], end-to-end ASR [3],
and machine translation [4]. Interpreting the parameters and out-
put of pre-trained recurrent networks, however, is difficult. Tradi-
tional statistics-based models, such as n-grams or regression, allow
for convenient interpretation with respect to their features and train-
ing data. Deep neural networks, however, learn opaque transforms
and embeddings in different real-valued, continuous spaces across
the depth of the network. For the purpose of understanding the be-
havior and limitations of a network, it is sometimes useful to be able
to characterize the information contained in a network’s parameters.

In this paper, we explore the use of state decoders to extract
information embedded inside the recurrent state produced by pre-
trained language and speech networks. We employ this to char-
acterize and dissect the recollection ability of LSTM kernels. As
we will demonstrate, such information can help us answer ques-
tions about the behavior of cross-domain model adaptation methods
(such as model retraining and kernel factorization), and information
encoded within the layers of an end-to-end ASR network such as
Listen-Attend-Spell [5, 6, 3].

The following section describes the prior art in network visu-
alization and interpretation, and where our work stand in relation.
Section 4 describes our visualization technique and our base recur-
rent architecture. We describe experiments applying of our method
in Sections 5, 6, 7, and 8. We conclude with a brief discussion of our
results in Section 9.

∗This author completed this work while working at Google, Inc.

2. PRIOR WORK

Prior methods used to visualize and interpret deep neural networks
fall into three main classes:

1. Methods that regularize the activations or alter the structure of
the network during training time to align with interpretability
metrics [7, 8, 9, 10].

2. Methods that operate on pre-trained models to identify inputs
or activations that strongly contribute to the network’s output
[11, 12, 13, 14, 15, 16, 17].

3. Methods such as DeepDream or image inversion that attempts
to understand properties of the filter weights that define model
behavior [18, 19].

Our method falls into this last category, extending this class to
include visualization of the memory capacity of time-dependent re-
current kernels. Prior work on interpreting LSTMs in context of
language or speech has been focused on identifying important in-
put tokens in sentiment classification [20], correlating LSTM inputs
with language model outputs [21]), or converting language model
LSTMs to rule-based classifiers [22]. Our visualization method in-
troduces a way to understand the information encoded inside RNN
state, in grapheme-based language and end-to-end ASR models.

3. PRELIMINARIES

In the stacked LSTM formulation [23, 21], the internal recurrent
state clt and cell output hl

t at time-step t and layer l are given by
forward update:

clt = f · clt−1 + i · I hl
t = o · tanh(clt) (1)

where (f , i,o, I) are the forget-gate, input-gate, output-gate, and
projected-input vectors, respectively. These vectors are computed
using a [4n× 2n] kernel weight matrix Wl:

[f , i,o, I] =

sigm
sigm
sigm
tanh

 (Wl ·

(
hl−1
t

hl
t−1

)
)

Gated Recurrent Units (GRUs) are a simpler cell formulation that
combines the recurrent state and output into one vector, hl

t [24].
Output hl

t is the smooth interpolation between a candidate output
h̃l
t and the previous cell output hl

t−1. For brevity, we leave inter-
ested readers to refer to [21] for a rigorous exposition of both kernel
cell types.

4. EXTRACTING MEMORY SIGNATURES

Of interest in recurrent networks is the information contained in
ct−1 and ht−1 about the history of prior inputs. For example, the
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fact that Wl encodes a memory behavior such that the cell forgets
all inputs prior to six time steps ago could be indicative of a domain-
specific pattern. In another example, the fact that the kernel’s mem-
ory vectors (ct or ht) retain information about the character t but
not r reflects asymmetric structure in the underlying set of modeled
sequences. Importantly, complete or partial input recall from ct and
ht is the first step in maintaining long-term dependencies.

To create our learned visualization construction, the memory sig-
nature of a cell, we train a set of ∆ × L decoders to extract infor-
mation from clt. Every decoder (δ, l) is responsible for decoding the
states in layer l and recalling input δ time steps prior, 1 ≤ δ ≤ ∆.
The (δ = 2, l = 1)-decoder, for example, learns to predict the
discrete input at time-step t − 2 given c1t . During training of the
decoders, the weights of the recurrent network are fixed. In a well-
tuned decoder, the accuracy and confusion matrix of the decoder is
indicative of the ability of the kernel’s ability to remember discrete
inputs from t-time steps ago. The memory signature is a compi-
lation of the accuracies of the decoder, either the accuracy across
discrete inputs (e.g. Figure 1) or the overall accuracy for each time
step (Figure 2). The decoders are trained in a similar fashion to the
primary model, using the corpus’s training partition, and tested using
the evaluation partition.

In sections 5, 6, and 7, our experiments use character-level re-
current networks. These networks follow the same structure as in
[21]:

g̃t+1 = argmax WP (RNN(WC · one-hot(gt))) + bP )

where gt is the grapheme input, g̃t+1 is the predicted next grapheme,
WC is a character embedding, and WP ,bP is a projection from the
RNN dimension to the dimension of the symbol set. We use fully-
connected networks with ReLU non-linearities for decoding. Lan-
guage model perplexities and decode accuracies are reported with
optimal training dropout on the decoder layers and recurrent state.
These were found by sweeping dropout keep probabilities from [0.5,
1] in intervals of 0.1. Our decoder parameter count generally settled
at being at least as large as the combined kernel and input projec-
tion parameter count. In our experiments in sections 5, 6, and 7, this
setting resulted in best decoder performance.

In the experiments in subsequent sections, we will use two
datasets: the complete works of Shakespeare (with 83k text seg-
ments, as used in [8]) and the Wall Street Journal (WSJ) corpus with
37K text segments (SI-284 for training, dev93 for development
and early stopping, and eval92 for evaluation) [25]. Unless oth-
erwise noted, our grapheme models are trained over the symbol set
[a-z .,#’], with # replacing any digit [0-9].

Figure 1 illustrates input recall and forward prediction of a GRU
trained on the Shakespeare corpus. We see a continuous decline in
recall rates as history length increases, different between characters,
as expected. Interestingly, a model’s ability to remember a charac-
ter in its recurrent state correlates poorly with its prediction accu-
racy. This is noted in some of the specific characters highlighted
in the figure: the model has relatively poor accuracy predicted the
instances of q in a sequence, but keeps a comparatively strong mem-
ory of ‘q’. The inverse trend is noted for ‘y’. The model predicts
future occurences of ‘y’ with high accuracy (presumably because it
is well represented in the training prior), but finds that it does not
need to keep strong memory of ‘y’. Symbols ‘k’, ‘e’ and ‘.’ ex-
hibit a similar pattern. The divergence between character accuracy
and character memory is a trend noticed in other models in our ex-
periments.

Fig. 1: a. Memory signature for a 1-layer GRU trained on the Shake-
speare corpus. y-axis is time-steps in the past for back-prediction.
x-axis is the list of symbols [a-z ,.]. b. Character-level ac-
curacy during forward-prediction. In both figures, accuracy ranges
from dark purple (100% recall) to white (0% recall).

(a) GRU (b) LSTM

Fig. 2: Marginal recall accuracies of a 1-layer GRU and LSTM lan-
guage models, trained on WSJ, with varying kernel dimensionali-
ties. y-axis is the number of time-steps in the past being predicted
(same as in Figure 1). x-axis describes the model architecture in
format (number of layers, kernel size); from left to
right, [1,80], [1,160], [1,320], [1,640].

5. KERNEL SIZE AND DEPTH ON RECALL

In our first set of experiments, we investigate the effect that state size
and network depth have on the encoded memory in GRU and LSTM-
based language models. Figure 2 illustrates the effect of increasing
state size on input recall. Moving from state size 80 to 640 not only
continuously decreased the test perplexity of both language models
by 15%, but also significantly increased the amount of information
encoded in the recurrent state about prior input. This is expected,
as larger state has greater capacity to store information. We exper-
imented with a variety of decoder sizes and dropout percentages,
selecting the best decoder architecture for every model architecture.
We notice that the GRU exhibits slightly worse recall from memory,
possibly because of the smaller parameter count for the correspond-
ing state size.

Figure 3 illustrates the amount of decodable history maintained
in the recurrent state of each layer as a function of depth of the net-
work. We see the trend that decodable knowledge of prior input
decreases as information propogates through layers of the recurrent
network (left to right). This is likely because (1) the information
content becomes strongly encoded as it passes through more trans-
forms and (2) memory of input is summarized and filtered out at ev-
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(a) GRU (b) LSTM

Fig. 3: Marginal recall accuracies for the recurrent state within each
layer of a [4,320]-sized GRU and LSTM WSJ LM. The y-axis is
the same as in Figure 2. The x-axis labels the recurrent layer from
which state is extracted: Layer 1 (closest to input), Layer 2, Layer 3,
and Layer 4.

ery layer, as deemed fit by a trained network. In an effort to increase
the decoder strength, to investigate possibility (1), we doubled the
decoder depth on layer 3 and 4, and saw small improvements to the
recall accuracy (< 5%). This is an avenue for future investigation.

6. DOMAIN ADAPTATION VIA RE-TRAINING

An open problem in language modeling is cross-domain adaptation:
given a large amount of data from a non-target domain, and a small
amount (or no) data from a target domain, how do we create the
best langauge model for the target domain? One common approach
for n-gram LMs is interpolation between an n-gram derived from the
out-of-domain data and an n-gram derived from in-domain data [26].
In the recurrent networks world, a commonly applied technique for
such domain adaptation is to train an LSTM on the out-of-domain
data, and subsequently re-train the network on subset of available
in-domain data. In the process of retraining, what happens to the
character recall behaviors?

The out-of-domain LSTM, trained on Shakespeare and evalu-
ated on WSJ, has test perplexity of 6.791 and memory signature
as shown in Figure 4.a. Re-training our Shakespeare LSTM with
5% of WSJ (less than 2% of the out-of-domain data), we obtain
the signature in Figure 4.b. We see qualitatively that signature
Figure 4.b. more strongly resembles the signature of the WSJ-
trained LSTM (Figure 4.c.) than a Shakespeare trained LSTM: the
weak ‘k’,‘l’,‘m’ symbol memory, the weaker ‘b’,‘c’ memories,
and weaker ‘u’ memory. Accordingly, the WSJ-eval perplexity dif-
ference between the retrained model and pure WSJ, 4.110 - 3.443
= 0.667, is 4x smaller than the corresponding difference between
the retrained model and a pure Shakespeare trained model, 6.791 -
4.110 = 2.681. In these models, and other retrained models in our
experiments, memory signatures act as a strong visual indicator for
model similarity.

As a related aside, using memory signatures we can visualize
an aspect of complementarity between n-gram and LSTM language
models. Work by Figure 5 plots the differences between the input re-
call capacity of a 5-gram (derived from states encoded in the n-gram)
and a 1-layer GRU trained on WSJ. The strong character-level mem-
ory differences between the two grapheme model types corroborate
the empirical perplexity advantages seen combining n-gram and re-
current networks in [27], and work done to use n-gram posteriors to

Fig. 4: Memory signatures for a 1-layer LSTM trained on the a.
Shakespeare corpus b. Shakespeare corpus, retrained on a WSJ 5%
dataset c. WSJ corpus. Axis are the same as in Figure 1.a. Lighter
green represents higher accuracy of input recall.

Fig. 5: Difference in accuracy of character recall between a 1-layer
GRU and 5-gram trained on WSJ. Axis are the same as in Fig-
ure 4. Red cells represent stronger GRU recall, blue cells represents
stronger n-gram recall.

bootstrap LSTM language model training [28].

7. INFORMATION DIVERSITY IN FACTORIZED
RECURRENT KERNELS

A recent technique applied for domain adaptation of recurrent net-
works is weight matrix decomposition by [6, 29]. In brief, every
recurrent kernel Wl, is decomposed as the sum of a primary weight
matrix and secondary weight bases, weighted by a λ vector:

Wl = W0 + λ0W0 + λ1W1 + . . .+ λnWn

λ represents statistics of the input domain. For example, in our
experiments, we feed normalized bigram frequencies as λ, and
correspondingly use 342 = 1156 rank-one bases. While [6] has
shown empirical advantages to this network structure for general-
izing across domains, it remains to be answered whether each of
the kernel bases contains divergent information from each other, or
whether there are basis after training that contain little information.

We can take a look at this question from the perspective of ker-
nel memory: do the individual basis encode different memory sig-
natures, implying the have different responisibilities in maintaining
long term dependencies? Our experiments suggest the answer is yes,
as shown in Figure 6.
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Fig. 6: Memory signatures (in the same format as Figure 1) of the
adaptation base kernel, and bi-grams ‘xt’, ‘ha’, ‘in’, ‘ld’, and
‘po’ (top-left to bottom-right). Accuracy ranges from dark purple
(100% recall) to white (0% recall).

The base kernel dominates model’s ability to maintain mem-
ory. The other five randomly-selected base kernels learn quite dif-
ferent memory behaviors. In fact, we see interesting correlation
between characters recollected and the corresponding λ-bigram for
that kernel; for example, the ‘he’ bi-gram kernel recalls ‘t’ and ‘h’
well. Our memory signatures suggest that models with this factor-
ized structure learn non-overlapping knowledge. We have the capa-
bility now, for example, to prune the kernels which contain memory
of graphemes that are not in our target domain.

8. END-TO-END ASR WITH LISTEN-ATTEND-SPELL

Much work in ASR in the past few years has been focused on de-
veloping end-to-end networks that read audio samples and and pro-
duce grapheme output [30, 31]. One such model that is commonly
used for benchmarking is Listen-Attend-Spell (LAS) [3]. The ar-
chitecture in LAS has three or more stacked LSTM encoder layers,
followed by one or more stacked LSTM decoder layers. At every
time step t, the decoder cell receives (1) the previous decoder out-
put and (2) a subset of encoder outputs, as decided by an attention
filter produced by an attention network with input q, another de-
coder output labeled as the ‘attention query vector’. The decoder
outputs a grapheme prediction at every time step. A common inter-
pretation of LAS’s audio encoder/language decoder architecture is
that it functions as the acoustic/language models that compose tra-
ditional ASR systems. With this encoder-decoder architecture, how-
ever, some questions naturally arise: what sort of grapheme-level
information is encoded in the recurrent state of the audio encoder?
Is knowledge of prior input distributed evenly across encoder layers?
Or does the decoder’s recurrent state encode more information about
prior graphemes?

We turn to memory signatures to provide us clues. Figure 7
displays the character-level recall accuracies from states in two lay-
ers in the encoder, as well as from the pre-attention decoder output.
Firstly, we notice the much stronger recall from the last encoder layer
as compared to the first: the encoder appears accumulate knowledge
of inputs from a wider time period as the layers grow deeper. This

Fig. 7: a. Memory signature of the first encoder layer of a Listen-
Attend-Spell (LAS) model trained on WSJ. b. Memory signature of
the last encoder layer for the same LAS model. c. Memory signature
of the query vectors of the decoder layer for the same LAS model. In
all figures, the the axis is the same as in Figure 1. Accuracy ranges
from dark purple (100% recall) to white (0% recall).

encoder behavior constrasts with the behavior noticed in recurrent
language models from Figure 3, where recall degraded deeper in the
network. It is interesting that even using shallow networks, we are
able to extract information about graphemes from the encoder lay-
ers, suggesting some grapheme symbolization is occurring in what
is sometimes thought to analogous to the acoustic model.

The decoder output in LAS demonstrates a much stronger char-
acter recall than the encoder layers. This could be because either
the decoder accumulates more information about the past, or that
graphemes are easier to back-predict, because the decoder operates
on graphemes, unlike the encoder.

9. DISCUSSION

In this paper, we describe a technique to visualize the recall capacity
of LSTM/GRU kernels using decoders of recurrent state. Input recall
is necessary to maintain on long-term dependencies, and we explic-
itly use this to characterize kernel memory. As demonstrated in our
case studies, memory signatures are useful in gauging information
diversity in recurrent kernels, visualizing information flow in end-
to-end ASR networks, and understanding domain-specific language
patterns. We encourage use of memory signatures, for example, to
understand a language model’s ability to track inter-word dependen-
cies and retain knowledge of previously encountered tokens.

While our experiments test recall of grapheme input, it is useful
to note that memory signatures are not limited to tracking recall of
single sequence input; the same decoders could test recall of prior
n-grams or discrete audio features. These is an avenue for future
work.

2399



10. REFERENCES

[1] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney,
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