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ABSTRACT

The propagation of sound in a shallow water environment is charac-
terized by boundary reflections from the sea surface and sea floor.
These reflections result in multiple (indirect) sound propagation
paths, which can degrade the performance of passive sound source
localization methods. This paper proposes the use of convolutional
neural networks (CNNs) for the localization of sources of broad-
band acoustic radiated noise (such as motor vessels) in shallow
water multipath environments. It is shown that CNNs operating
on cepstrogram and generalized cross-correlogram inputs are able
to estimate more reliably the instantaneous range and bearing of
transiting motor vessels when the source localization performance
of conventional passive ranging methods is degraded. The ensuing
improvement in source localization performance is demonstrated
using real data collected during an at-sea experiment.

Index Terms— source localization, DOA estimation, convolu-
tional neural networks, passive sonar, reverberation

1. INTRODUCTION

Sound source localization plays an important role in array signal pro-
cessing with wide applications in communication, sonar and robotics
systems [1]. It is a focal topic in the scientific literature on acous-
tic array signal processing with a continuing challenge being acous-
tic source localization in the presence of interfering multipath ar-
rivals [2, 3, 4]. In practice, conventional passive narrowband sonar
array methods involve frequency-domain beamforming of the out-
puts of hydrophone elements in a receiving array to detect weak sig-
nals, resolve closely-spaced sources, and estimate the direction of
a sound source. Typically, 10-100 sensors form a linear array with
a uniform interelement spacing of half a wavelength at the array’s
design frequency. However, this narrowband approach has applica-
tion over a limited band of frequencies. The upper limit is set by
the design frequency, above which grating lobes form due to spatial
aliasing, leading to ambiguous source directions. The lower limit is
set one octave below the design frequency because at lower frequen-
cies the directivity of the array is much reduced as the beamwidths
broaden.

An alternative approach to sound source localization is to mea-
sure the time difference of arrival (TDOA) of the signal at an ar-
ray of spatially distributed receivers [5, 6, 7, 8], allowing the in-
stantaneous position of the source to be estimated. The accuracy of
the source position estimates is found to be sensitive to any uncer-
tainty in the sensor positions [9]. Furthermore, reverberation has an
adverse effect on time delay estimation, which negatively impacts
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sound source localization [10]. In a model-based approach to broad-
band source localization in reverberant environments, a model of the
so-called early reflections (multipaths) is used to subtract the rever-
beration component from the signals. This decreases the bias in the
source localization estimates [11].

Using a single sensor, the instantaneous range of a broadband
signal source is estimated using the cepstrum method [12]. This
method exploits the interaction of the direct path and multipath ar-
rivals, which is observed in the spectrogram of the sensor output
as a Lloyds mirror interference pattern [12]. Generalized cross-
correlation (GCC) is used to measure the TDOA of a broadband
signal at a pair of sensors which enables estimations of the source
bearing. Furthermore, adding another sensor so that all three sen-
sor positions are collinear enables the source range to be estimated
using the two TDOA measurements from the two adjacent sensor
pairs. The range estimate corresponds to the radius of curvature of
the spherical wavefront as it traverses the receiver array. This lat-
ter method is commonly referred to as passive ranging by wavefront
curvature [13]. However, its source localization performance can
become problematic in multipath environments when there is a large
number of extraneous peaks in the GCC function attributed to the
presence of multipaths, and when the direct path and multipath ar-
rivals are unresolvable (resulting in TDOA estimation bias). Also,
its performance degrades as the signal source direction moves away
from the array’s broadside direction and completely fails at endfire.
Note that this is not the case with the cepstrum method with its om-
nidirectional ranging performance being independent of source di-
rection.

Recently, Deep Neural Networks (DNN) based on supervised
learning methods have been applied to acoustic tasks such as speech
recognition [14, 15], terrain classification [16], and source localiza-
tion tasks [17]. A challenge for supervised learning methods for
source localization is their ability to adapt to acoustic conditions
that are different from the training conditions. The acoustic char-
acteristics of a shallow water environment are non-stationary with
high levels of clutter, background noise, and multiple propagation
paths making it a difficult environment for DNN methods.

A CNN is proposed that uses generalized cross-correlation
(GCC) and cepstral feature maps as inputs to estimate both the
range and bearing of an acoustic source passively in a shallow water
environment. The CNN method has an inherent advantage since it
considers all GCC and cepstral values that are physically significant
when estimating the source position. Other approaches involving
time delay estimation typically consider only a single value (a peak)
in the GCC or cepstogram. The approach adopted in this paper uses
a minimum number of sensors (no more than three) to localize the
source. The CNNs are trained using real, multi-channel acoustic
recordings of a surface vessel underway in a shallow water environ-
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Fig. 1. a) Cepstrogram for a surface vessel as it transits over a single
recording hydrophone located 1 m above the sea floor, and b) the
corresponding cross-correlogram for a pair of hydrophones.

ment. CNNs operating on cepstrum or GCC feature map inputs only
are also considered and their performances compared. The proposed
model is shown to localize sources more reliably than conventional
passive sonar localization methods that use TDOA measurements.
Generalization performance of the networks is tested by ranging
another vessel with different radiated noise characteristics.

The original contributions of this work are:

• Development of a multi-task CNN for the passive localiza-
tion of acoustic broadband noise sources in a shallow water
environment where the range and bearing of the source are
estimated jointly with improved performance over traditional
methods;

• Range and bearing estimates are continuous, allowing for im-
proved resolution in position estimates when compared to
other passive localization networks which use a discretized
classification approach [17, 18]; and

• A novel loss function based on localization performance in
physical space, where bearing estimates are constrained for
additional network regularization when training;

2. ACOUSTIC LOCALIZATION CNN

A neural network is a machine learning technique that maps the input
data to a label or continuous value through a multi-layer non-linear
architecture. Neural networks have been successfully applied to im-
age and object classification [19, 20], hyperspectral pixel-wise clas-
sification [21] and terrain classification using acoustic sensors [16].
CNNs learn and apply sets of filters that span small regions of the
input data, enabling them to learn local correlations.

2.1. Architecture

Since the presence of a broadband acoustic source is readily ob-
served in a cross-correlogram and cepstrogram, Fig. 1, it is possible
to create a unified network for estimating the position of a vessel rel-
ative to a receiving hydrophone array. The network is divided into
sections, Fig 2. The GCC CNN and cepstral CNN operate in parallel
and serve as feature extraction networks for the GCC and cepstral
feature map inputs respectively. Next, the outputs of the GCC CNN
and cepstral CNN are concatenated and used as inputs for the dense
layers, which outputs a range and bearing estimate.

dense: 256

dense: 256

dense: 256

dense: 256

dense: 256

dense: 256

GCC input Cepstral input

multichannel acoustic recording

Range output Bearing output

GCC CNN Cepstral CNN

Localization

     CNN

Fig. 2. Network architecture for the acoustic localization CNN

For both the GCC CNN and cepstral CNN, the first convolu-
tional layer filters the input feature maps with 48 kernels of size
10 × 1 × 1. The second convolutional layer takes the output of the
first convolutional layer as input and filters it with 48 kernels of size
10×1×48. The third layer also uses 48 kernels of size 10×1×48,
and is followed by two fully-connected layers. The combined CNN
further contains two fully-connected layers that take the concate-
nated output vectors from both of the GCC and cepstral CNNs as
input. All the fully-connected layers have 256 neurons each. A sin-
gle neuron is used for regression output for the range and bearing
outputs respectively. All layers use rectified linear units as activa-
tion functions. Since resolution is important for the accurate ranging
of an acoustic source, max pooling (or any other down-sampling be-
tween network layers) is not used in the network’s architecture.

2.1.1. Input

To localize a source using a hydrophone array, information about
the time delay between signal propagation paths is required. Al-
though such information is contained in the raw signals, it is bene-
ficial to represent the time delay information more directly so that
it can be readily learned by the network. Here, the cepstral feature
map contains the mulitpath time delay information between the di-
rect path arrival and a multipath arrival at a single sensor. The GCC
feature map contains the time delay information of the direct path
arrivals (together with the multipath arrival) at a pair of sensors.

A cepstrum can be derived from various spectra such as the
complex or differential spectrum. For the current approach, the
power cepstrum is used and is derived from the power spectrum of a
recorded signal. It is closely related to the Mel-frequency cepstrum
used in automatic speech recognition tasks [14, 15], but has linearly
spaced frequency bands rather than bands approximating the human
auditory system’s response. The cepstral representation of the signal
is neither in the time nor frequency domain, but rather, it is in the
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quefrency domain [22]. Cepstral analysis is based on the principle
that the logarithm of the power spectrum for a signal containing
echoes has an additive periodic component due to the echoes from
multi-path reflections [23]. Where the original time waveform con-
tains an echo the cepstrum will contain a peak and thus the TDOA
between propagation paths of an acoustic signal can be measured
by examining peaks in the cepstrum [24]. The cepstrum has ap-
plication when strong multipath reflections are present, which can
degrade the performance of GCC methods [25]. The cepstrum x̂(n)
is given by the inverse Fourier transform of the logarithm of the
power spectrum:

x̂(n) = F−1(log|S(f)|2), (1)

where S(f) is the Fourier transform of a discrete time signal x(n).
For a given source-sensor geometry, there is a bounded range of

quefrencies useful in source localization. As the source-sensor sep-
aration distance decreases to a minimum, the multipath time delay
values (position of peaks in the cepstrum) will tend to a maximum
value, which occurs when the source is at the closest point of ap-
proach to the sensor. TDOA values greater than this maximum are
not physically realizable and are excluded. Cepstral values near zero
are dominated by extraneous quefrencies and are also excluded.

GCC is used to measure the TDOA of a signal at a pair of
hydrophones and is useful in situations of spatially uncorrelated
noise [26]. For a given array geometry, there is a bounded range
on useful GCC information. For a pair of recording sensors, a
zero relative time delay corresponds to a broadside source, whilst
a maximum relative time delay corresponds to an endfire source.
TDOA values greater than the maximum bound have no physical
significance and are excluded [27, 12]. The windowing of CNN
inputs has the added benefit of reducing the number of parameters
in the network. A cepstrogram and cross-correlogram for a surface
vessel transit is shown in Fig. 1.

2.1.2. Output

For each example, the network predicts the range and bearing of the
acoustic source as a continuous value (each with a single neuron re-
gression output). This differs from other recent passive localization
networks which use a classification-based approach where range and
bearing predictions are discretized, putting a hard limit on the reso-
lution of estimations that the networks are able to provide [17, 18].

2.2. Multi-task Joint Training

The objective of the network is to predict the range and bearing of
an acoustic source relative to a receiving array from reverberant and
noisy multi-channel input signals. Since the localization of an acous-
tic source involves both a range and bearing estimate, both the range
and bearing output loss components are jointly minimized using a
loss function based on localization performance in physical space.
This additional regularization is expected to improve localization
performance when compared with minimizing range loss and bear-
ing loss separately.

The total objective function E minimized during network train-
ing is given by the weighted sum of the polar-distance loss Ep and
the bearing loss Eb, such that:

E = αEp + (1− α)Eb, (2)

where Ep is the L2 norm of the polar distance given by:

Ep = y2 + t2 − 2yt cos(θ − φ) (3)

and Eb is the L2 norm of the bearing loss only, given by:

Eb = (θ − φ)2 (4)

with the predicted range and bearing output denoted as t and φ re-
spectively, and the true range and bearing denoted as y and θ respec-
tively. The inclusion of the Eb term encourages bearing predictions
to be constrained to the first turn, providing additional regulariza-
tion and reducing parameter weight magnitudes. The two terms are
weighted by hyper-parameter α so each loss term has roughly equal
weight. Training uses batch normalization [28] and is stopped when
the validation error does not decrease appreciably per epoch. In or-
der to further prevent over-fitting, regularization through a dropout
rate of 50% is used in all fully connected layers when training [29].

3. EXPERIMENTAL RESULTS

Passive localization on a transiting vessel was conducted using a
multi-sensor algorithmic method described in [30], and CNNs with
cepstral and/or GCC inputs. Their performances were then com-
pared. The generalization ability of the networks to other broadband
sources is also demonstrated by localizing an additional vessel with
a different radiated noise spectrum and source level.

3.1. Dataset

Acoustic data of a motor boat transiting in a shallow water environ-
ment over a hydrophone array were recorded at a sampling rate of
250 kHz. The uniform linear array (ULA) consists of three recording
hydrophones with an interelement spacing of 14 m. Recording com-
menced when the vessel was inbound 500 m from the sensor array.
The vessel then transited over the array and recording was terminated
when the vessel was 500 m outbound. The boat was equipped with
a DGPS tracker, which logged its position relative to the receiving
hydrophone array at 0.1 s intervals. Bearing labels were wrapped
between 0 and π radians, consistent with bearing estimates available
from ULAs which suffer from left-right bearing ambiguity. Twenty-
three transits were recorded over a two day period. One hundred
thousand training examples were randomly chosen each with a range
and bearing label, with examples uniformly distributed in range only.
A further 5000 labeled examples were reserved for CNN training
validation. The recordings were preprocessed as outlined in Sec-
tion 2.1.1, using 0.1 s of recorded multi-channel data per example.
The networks were implemented in TensorFlow and were trained
with a Momentum Optimizer using a NVIDIA GeForce GTX 770
GPU. The gradient descent was calculated for batches of 32 train-
ing examples. The networks were trained with a learning rate of
3 × 10−9, exponential learning rate decay of 0.96, network param-
eter weight decay of 1 × 10−5 and momentum of 0.9. Additional
recordings of the vessel were used to measure the performance of the
methods. These recordings are referred to as the test dataset and con-
tain 9980 labeled examples. Additional acoustic data were recorded
on a different day using a different boat with different radiated noise
characteristics. Acoustic recordings for each transit started when the
inbound vessel was 300 m from the array, continued during its tran-
sit over the array, and ended when the outbound vessel was 300 m
away. This dataset is referred to as the generalization set and con-
tains 11714 labeled examples.

3.2. Input of Network

Cepstral and GCC feature maps were used as inputs to the CNN and
they were computed as follows. For any input example, only a select

2388



0°

45°

90°

135°

180°

225°

270°

315°

100200300400500600

Combined CNN
Algorithmic Method
DGPS

Fig. 3. Estimates of the range and bearing of a transiting vessel. The
true position of the vessel is shown relative to the recording array,
measured by the DGPS.
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Fig. 4. Comparison of range estimation performance as a function
of the vessels true range for the a) test dataset and b) generalization
dataset.

range of cepstral and GCC values contain relevant TDOA informa-
tion and are retained - see Section 2.1.1. Cepstral values more than
1.4 ms are discarded because they represent the maximum multipath
delay and occur when the source is directly over a sensor. Cepstral
values less than 84 µs are discarded since they are extraneous. Thus,
each cepstrogram input is liftered and samples 31 through 351 are
used as input to the network only. A cepstral feature vector is calcu-
lated using 0.1 s of audio for each recording channel, resulting in a
320 x 3 cepstal feature map. Due to array geometry, the maximum
time delay between pairs of sensors is±9.2 ms. A GCC feature vec-
tor is calculated using 0.1 s of observations for two pairs of sensors,
resulting in a 4800 x 2 GCC feature map. The GCC map is further
sub-sampled to size 480 x 2, which reduces the number of network
parameters.

3.3. Comparison of Localization Methods

Algorithmic passive localization was conducted using the methods
outlined in [30]. The TDOA values required for algorithmic local-
ization were taken from the largest peaks in the GCC. Nonphysical
results at ranges greater than 1000 m are discarded. Other CNN ar-
chitectures are also compared. The GCC CNN uses the GCC CNN
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Fig. 5. Comparison of bearing estimation performance as a function
of the vessels true bearing for the a) test dataset and b) generalization
dataset.

section of the combined CNN only, and the Cepstral CNN uses the
Cepstral CNN section of the combined CNN only, both with similar
range and bearing outputs, Fig 2. Fig. 3 shows localization results
for a vessel during one complete transit. Fig. 4 and Fig. 5 show
the performance of localization methods as a function of the true
range and bearing of the vessel for the test dataset, and the gener-
alization set respectively. The CNNs are able to localize a different
vessel in the generalization set with some impact to performance.
The performance of the algorithmic method is degraded in the shal-
low water environment since there are a large number of extraneous
peaks in the GCC attributed to the presence of multipaths, and when
the direct path and multipath arrivals become unresolvable (result-
ing in TDOA estimation bias). Bearing estimation performance is
improved in networks using GCC features, showing that time delay
information between pairs of spatially distributed sensors is benefi-
cial. The networks show improved robustness to interfering multi-
paths. Range estimation performance is improved in networks using
cepstral features, showing that multipath information can be useful
in determining the sources range. The combined CNN is shown to
provide superior performance for range and bearing estimation.

4. CONCLUSIONS

In this paper we introduce the use of a CNN for the localization of
surface vessels in a shallow water environment. We show that the
CNN is able to jointly estimate the range and bearing of an acoustic
broadband source in the presence of multipath interference. Sev-
eral CNN architectures are compared and evaluated. The networks
are trained and tested using cepstral and GCC feature maps as input
formed from real acoustic recordings. Networks are trained using a
novel loss function based on physical localization performance with
additional constraining of bearing estimates. The inclusion of both
cepstral and GCC inputs facilitates robust passive acoustic source
localization in reverberant environments, where conventional algo-
rithmic methods are less reliable.
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