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ABSTRACT

We present a new approach for detecting related crime series,
by unsupervised learning of the latent feature embeddings
from narratives of crime record via the Gaussian-Bernoulli
Restricted Boltzmann Machine (GBRBM). This is a drasti-
cally different approach from prior work on crime analysis,
which typically considers only time and location and at most
category information. After the embedding, related cases are
closer to each other in the Euclidean feature space, and the
unrelated cases are far apart, which is a good property can en-
able subsequent analysis such as detection and clustering of
related cases. Experiments over several series of related crime
incidents hand labeled by the Atlanta Police Department re-
veal the promise of our embedding methods.

Index Terms— Unsupervised learning, crime data analy-
sis, feature embeddings, neural networks

1. INTRODUCTION

A fundamental and one of the most challenging tasks in crime
analysis is to find related crime series [1], which are commit-
ted by the same individual or group. Such series of crimes
follow a so-called modus operandi (M.O.), for instance, some
criminals always break into houses in the late afternoon from
backdoor to steal jewels. Finding crime series based on M.O.
critically depend on extracting informative features for crime
incidents [1], which is usually done by the human, however,
this is not scalable to larger and ever-growing crime data set.
For instance, in the City of Atlanta, from the year 2013 to
2017, there are a total of 1,096,961 cases with over 800 cate-
gories.

Crime incident reports (a.k.a. police reports) are a large
source of data that contains rich information for detecting re-
lated crime series, which somehow has not been tapped. Each
incident has a unique police report, which contains the time,
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location (latitude and longitude), and last but the not the least,
the free-text narratives entered by police officers. According
to the crime analysts, the free-text narrative contains the most
useful information form their investigation, but there has yet
been a tool to automatically extract useful features and infor-
mation from the free-text narratives, since the narratives are
very noisy and unstructured, written by different police offi-
cers, and are sometimes incomplete English sentences since
they are written in a haste. Currently, crime analysts identify
crime series by hand.

In this paper, we propose a new approach for detecting
related crime series that are usually committed by a same
group of suspects. This method can directly process the free-
text narratives of the police reports, and map them into a
feature vector space that automatically captures the similarity
of incidents. The main idea is to map the raw feature ex-
tracted from the narratives using standard NLP models (such
as the bag-of-words model), into latent feature vector space,
using Gaussian-Bernoulli Restricted Boltzmann Machines
(GBRBMs). The GBRBM is trained from a large number of
data without supervision. After training, GBRBM embeds
the crime incidents to capture their similarity by vicinity in
the Euclidean space. Our work is inspired by the idea of word
embeddings [2], we similarly assume We validate the effec-
tiveness of our method over several series of related crime
incidents hand labeled by the Atlanta Police Department.

Relation to prior work. A seminal work [1] uses subspace
clustering to find crime series and has achieved good perfor-
mance. However, [1] requires clean features that are entered
by the human for each incident. For the larger scale of police
report data, there are not many clean hand-entered features.
For such dataset, it is highly desirable to be able to directly
work with the free-text narratives and find hidden correlations
of the crime series.

A recent work [3] explores the possibilities of using nat-
ural language processing tools for crime pattern detection,
including Latent Dirichlet Allocation (LDA) and Latent Se-
mantic Analysis (LSA). In certain cases (as we observed in
our experiment in Section 3), embedding via GBRBM can be
a better approach than LDA, because GBRBM can capture
more subtle distinctions between different narratives. This is
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Fig. 1. An overview of the essential idea of our method.

possibly due to that the structure of RBM directly captures
the hidden correlation between incidents via nonlinear struc-
tures. We also observe that the narratives usually contain pro-
fessional but limited ”police vocabulary” and has distinct but
similar writing styles. This may explain why learning good
vector representations is possible, as we have observed from
experimenting with millions of crime records in the Atlanta
Police Department database.

Another line of research from crime analysis and predic-
tive policing focus on the so-called hotspot prediction (see,
e.g., [4, 5]), which has achieved a lot of success in model-
ing the dynamics of crimes over space and time. The hotspot
prediction aims to model the excitation relationships between
crime incidents occurred at different space and time. The idea
is that certain types of crimes (such as gang crimes) have a
triggering effect: an event happens at certain location and
time may trigger future incidents at similar locations in the
futures. The hotspot prediction typically only use time, loca-
tion (and sometimes category) information of the incidents.

2. EMBEDDING USING GBRBM

Our dataset is provided by the Atlanta Police Department
(APD), which consist of all crime incidents from 2013 to
2017, with 1,096,961 cases in over 800 different categories.
The records are unlabeled and naive clustering will not re-
solve them into related crime series. The latent feature em-
bedding algorithm that we describe below capture the critical
information of the crime and criminal correlations would be
very helpful no matter for further classification or clustering
of the crime cases in the absence of label information.

The flowchart of the embedding algorithm is shown in
Fig. 1. On a high level, we first generate raw features us-
ing standard natural language processing tools, such as term-

frequency inverse-document-frequency (TF-IDF) for each in-
cident. The core of the algorithm is the GBRBM with the
input being the TF-IDF of reports. We train the GBRBM by
maximizing the likelihood function (defined in terms of the
energy function) for the occurrence of word terms in a po-
lice report, and in the end, use the output latent variables as
the embedded features for each corresponding crime incident.
The embedded features have a nice property that related cases
have features in the vicinity in the Euclidean space.

Fig. 2. An example of Tri-Gram.

2.1. Raw Feature Extraction

The free-text narratives are highly unstructured data, mean-
while they also consist typos, irrelevant words or phrases.
Our raw feature extraction is designed to be robust to these
issues. Several key steps are as follows: Data cleaning: we
normalize the text to lower-cases so that the distinction be-
tween ”The” and ”the” are ignored; also remove stop-words,
independent punctuation, low-frequency terms (low TF) and
the terms that appeared in most of the documents (high IDF).
Tokenization: for each narrative of the crime, the text needs
to be tokenized into a list of word-level tri-gram terms, as
shown in Fig.2. As a matter of experience, unigram and
bigram loss too much context information, while the four-
gram or higher gram secures only tiny gains while making
the feature vector become too long and increasing the model
complexity and training is more time-consuming. Bag of
Words (BoW): BoW is a simplifying, orderless document
representation commonly used in NLP. In this representa-
tion, each document is represented by one vector where each
element means the occurrence in association with a specific
term. As a result, the entire corpus can be converted to a term-
document matrix and a dictionary that keeps the mapping
between the terms and their ids. Term Frequency-Inverse
Document Frequency (TF-IDF) is a conventional method
for extracting feature vectors from the term-document matrix
to de-emphasize frequent words. In [6], TF-IDF weighting
scheme has been used to reduce the impact of the terms that
appeared in most of the documents, which means that they
have weak discrimination capability across documents.

2.2. Model Architectures

GBRBM is a type of neural networks and it can be viewed
as a probabilistic graphical model. GBRBM is a powerful
model for the complex joint distribution of real-valued visi-
ble variables and binary valued hidden variables [7]. Here,
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we consider a standard GBRBM, whose architecture is shown
in Fig.1, where there are n hidden variables as embeddings
and m visible variables that will be input by tokenized word
terms. The weights, represented as a matrixW = (wij), asso-
ciate the hidden variable hj and visible variable vi. There are
also bias weights cj for the hidden variable and bi for the vis-
ible variable. The learned weights and biases define a Gibbs
probability distribution over all possible input data via the en-
ergy function, denoted as E(v,h). The energy function for
the joint configuration (v,h) of the visible and hidden units
is defined [8]

E(v, h) = −
∑
i,j

wijhj
vi
σj
−
∑
i

(vi − bi)2

2σ2
−
∑
j

hjcj .

Note that the first term of the energy function captures the
joint pattern of the hidden and visible variables, and the sec-
ond and the third terms capture the linear effect of both the
hidden and the visible variables. A nice structure of the RBM
is that the joint distributions of the visible and hidden vari-
ables, conditioned on each other, are mutually independent

p(v|h) =
m∏
i=1

p(vi|h), p(h|v) =
n∏
j=1

p(hj |v).

Moreover, the conditional distribution of vi|h is a normal ran-
dom variable N (bi + σi

∑n
j=1 wijhj , σ

2
i )

p(vi = v|h) = 1

σi
√
2π
· e

− 1

2σ2
i

(vi−bi−σi
∑n
j=1 wijhj)

2

,

and the conditional distribution of hi|v is Bernoulli variable

p(hj = 1|v) = σ(

m∑
i=1

wij
vi
σi

+ cj).

where σ is a sigmoid function. Due to this property, it is eas-
ily to sample visible or hidden variables via Gibbs sampling
[9] in just two steps: sampling a new state h for the hidden
units based on p(h|v) and sampling a state v for the visible
layer based on p(v|h). The sampling procedure is essential to
perform model estimation.

2.3. Model Estimation

We follow the standard training approach for GBRBM. The
training objective of the GBRBM is to maximize a likeli-
hood function, which is defined via the energy function. The
training result, somehow, in the end, converges to represen-
tations such that related cases tend to be close to each other
in Euclidean space. More formally, given a set of training
narratives V = {v(1), v(2), v(3), . . . , v(N)}, the objective of
the model is to maximize the average log likelihood given by
logL(θ|V ) =

∑N
i=1 log p(v

(i)|θ), where the marginal distri-
bution is given by

p(v) =
∑
h

p(v, h) =

∑
h e

−E(v,h)∑
v,h e

−E(v,h)
.

Note that the number of possible values of h vectors is ex-
ponential in the number of hidden variables, so in practice,
one usually performs sampling approach to calculate the sum
approximately.

Directly obtaining unbiased estimates of the log-likelihood
gradient using MCMC methods typically requires many sam-
pling steps. In training, we adopt the k-step contrastive
divergence (CD-k) approach, which is an approach to ap-
proximate the gradient in training GRB via gradient descent
[10]. The main idea is to approximate the gradient of the
log-likelihood with respect to θ for one training pattern v(0)

as

CDk(θ, v
(0)) = −

∑
h

p(h|v(0))∂E(v(0), h)

∂θ

+
∑
h

p(h|v(k))∂E(v(k), h)

∂θ
.

The Gibbs chain is initialized with a training example v(0)

of the training set and yields the sample v(k) after k steps.
Each step t consists of sampling h(t) from p(h|v(t)) and sam-
pling v(t+1) from p(v|h(t)) subsequently. The iterations are
repeated until certain empirical convergence has achieved.

3. RESULTS

To test the performance of our embedding method, we de-
vise a comprehensive test dataset. The dataset contains five
hand-labeled crime series that were identified as committed
by five individual arrestees, and 441 randomly selected irrele-
vant crime cases. Details of the test data are given in Table 1.

Ideally, we hope that the crime records which were com-
mitted by the same arrestee tend to be closed to each other
in the embedded feature space. However, it is not so easy to
show the distance between two crime cases directly without
dimensionality reduction on their feature embeddings. For vi-
sualization purposes, we apply two-dimensional t-distributed
stochastic neighbor embeddings (t-SNE) [11] to the feature
embeddings, to convert the high-dimensional feature vectors
into a matrix of pairwise similarities. t-SNE is capable of cap-
turing local structure of the high-dimensional data, while also
revealing global structures such as the presence of clusters at
several scales [11].

In our experiments, the basic parameters for the GBRBM
are as follows: the size of the visible layer is fixed to 9863,
which is determined by the size of the dictionary. We tried 3
different sizes of the hidden layer for testing the model perfor-
mance, with 1000, 2000 and 5000 hidden units respectively.
In the training stage, the learning rate is 0.05, the batch size
is 20, and the number of epochs at fine tune periods is 30. We
adopt the Stochastic Gradient Descent (SGD) optimizer [12]
to optimize the loss function.

First, we study the effect when increasing the number of
hidden variables in GBRBM. This will lead to different di-
mensions of the feature embeddings. Fig.3 (a) shows that the
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Table 1. Details of the test data

Id Number Category
Crime Series 1 8 Robbery at Residence
Crime Series 2 7 Robbery at Gas Station
Crime Series 3 4 Pedestrian Robbery
Crime Series 4 15 Attempt Auto Theft
Crime Series 5 22 Burglary
Random Cases 441 Over 89 Categories
Total 497

Table 2. The comparison of the training time.

Methods Training Time
GBRBMs with 1000 units ∼ 2 mins
GBRBMs with 2000 units ∼ 3 mins
GBRBMs with 5000 units ∼ 7 mins
LDA with 1000 topics ∼ 5 mins

embeddings with 1000 units can successfully map crime se-
ries 1, 2, 3, 5 to clusters, which separate them out from ran-
dom cases. In particular, for crime series 1, 2, 3, the em-
beddings of same crime series gather closely at some local
regions. The clustering does not work quite well for crime
series 4. When we increase the number of the hidden units to
2000, the performance for crime series 4 become much bet-
ter as shown in Fig.3 (b) and (c). The performance of the
GBRBM does not seem to have significant further improve-
ment when we further increase the number of the hidden vari-
ables (Fig.3 (c)).

Second, we compare the performance of GBRBM with
Latent Dirichlet Allocation (LDA) [13] on the same test data
set. Fig.3 shows four instances, which are the projection of
the embeddings via GBRBM and LDA topic modeling on
a 2D t-SNE space. We implement a LDA with 1000 latent
topics. It turns out that the LDA does not map crime series
into clusters: they are scattered randomly in the feature space
without any obvious patterns.

The embedding can be computed efficiently. As reported
in Table 2, the training time of reaching the convergence pre-
cision for 497 cases are around minutes. This also shows the
GBRBM with less than 2000 hidden units have an advantage
over the LDA in terms of the training time.

4. CONCLUSION

We have presented a novel approach for detecting crime se-
ries that are related, using embedding found by the Gaussian-
Bernoulli Restricted Boltzmann Machine (GBRBM). The
GBRBM tends to map related cases (that share certain cor-
relation in the raw feature) into features that are in the vicin-
ity in the Euclidean space. Our methods demonstrate very
promising results on real police data and demonstrated that
the feature embeddings can have advantages over the conven-

(a) GBRBMs with 1000 hidden nodes

(b) GBRBMs with 2000 hidden nodes

(c) GBRBMs with 5000 hidden nodes

(d) LDA with 1000 topics

Fig. 3. Visualization of the projections of different embed-
dings on the 2D t-SNE space.

tional text processing methods on detecting crime series in
certain cases. Ongoing work is to develop an online crime
series detection algorithm based on the embedded features.
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