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ABSTRACT

Anomalies have broad patterns corresponding to their causes. In
industry, anomalies are typically observed as equipment failures.
Anomaly detection aims to detect such failures as anomalies. Al-
though this is usually a binary classification task, the potential
existence of unseen (unknown) failures makes this task difficult.
Conventional supervised approaches are suitable for detecting seen
anomalies but not for unseen anomalies. Although, unsupervised
neural networks for anomaly detection now detect unseen anomalies
well, they cannot utilize anomalous data for detecting seen anoma-
lies even if some data have been made available. Thus, providing
an anomaly detector that finds both seen and unseen anomalies
well is still a tough problem. In this paper, we introduce a novel
probabilistic representation of anomalies to solve this problem. The
proposed model defines the normal and anomaly distributions using
the analogy between a set and the complementary set. We ap-
plied these distributions to an unsupervised variational autoencoder
(VAE)-based method and turned it into a supervised VAE-based
method. We tested the proposed method with well-known data and
real industrial data to show that the proposed method detects seen
anomalies better than the conventional unsupervised method without
degrading the detection performance for unseen anomalies.

Index Terms— Anomaly detection, variational autoencoder
(VAE), neural network

1. INTRODUCTION

Automatic anomaly detection in multimedia has large underlying po-
tential in new business fields. One purpose of anomaly detection is to
prevent or detect equipment failures instantly. There is high demand
for various practical applications of anomaly detection in fields such
as surveillance systems [1, 2, 3], animal husbandry [4, 5, 6], and
material and/or equipment inspection [7, 8, 9, 10, 11, 12].

A typical strategy to automatically detect anomalies is an unsu-
pervised approach using only data that are labeled as normal. This
approach is often called outlier detection. In outlier detection, an
observed sample is identified as an “anomaly” when a kind of dis-
similarity from the normal model, which is frequently called the
“anomaly score,” exceeds a pre-defined threshold. Many conven-
tional unsupervised approaches are interpreted as probabilistic gen-
erative models with anomaly scores defined by their likelihoods.
Major model choices include regression models[13, 14, 15, 16] and
topic models [17, 18].

In practical situations, we may occasionally obtain a part of
anomalous data. In such a case, an anomaly detection algorithm may
be extended to a supervised binary classification problem, which
separates data into normal and anomalous data. However, a sim-
ple binary classification algorithm is difficult to be used for anomaly
detection because of three main problems:

Imbalanced data: anomalous data are often hard to obtain and are
obtained less frequently than normal data. This data imbal-
ance causes over-fitting: the classification results lack gener-
alization [19]. To avoid this phenomenon, imbalance learning
techniques are applied to anomaly detection [20].

Labeling cost: basically, human experts judge whether the sam-
ple is normal or not. Thus, it is difficult to create a massive
amount of labeled data. As a solution, a semi-supervised ap-
proach that exploits unlabeled data is used [21]. In this ap-
proach, the missing label may be estimated from the small
amount of labeled data.

Presence of unseen anomalies: in many practical cases, types of
anomalies are diverse. For example, in machine failure cases,
we cannot observe all possible failure patterns. There may be
many kinds of rare cases in which anomaly data cannot eas-
ily be collected. In such cases, conventional supervised and
semi-supervised methods with few seen anomaly samples of-
ten do not detect unseen anomalies that some unsupervised
methods usually do [22]. Although this problem is also im-
portant for practical usage and has been tackled in some of
the literature [22, 23, 24], it is focused on less than the two
above problems.

In this paper, we focus on the last problem: we propose a solu-
tion for detecting seen anomalies without degrading detection per-
formance for unseen anomalies in supervised situations. We intro-
duce a novel statistical representation of unseen anomalies into a
variational autoencoder (VAE) [25], which is a promising generative
neural network that has already been applied to anomaly detection
[15, 16, 21]. We turned the VAE into a supervised model by modi-
fying its prior distribution. The key assumption is that anomalies are
“not normal.” We start by replacing this property with the equiva-
lent relationship between the set expressing the occurrence of nor-
mal samples and its complementary set expressing the occurrence of
anomalous samples. Then we change the original prior into the prior
corresponding to the complementary set. Finally, substituting this
to VAE’s loss function, we can analytically represent the property
of anomalies with few approximations. From an anomaly detection
point of view, we show the proposed method includes the unsuper-
vised VAE anomaly detection method [15] as a special case. We also
show the proposed method detects both seen and unseen anomalies
more accurately than previous unsupervised method in terms of the
area under the receiver characteristic curve.

Our main contributions are summarized as follows:
• We propose a supervised anomaly detection algorithm as an

extension of an unsupervised VAE algorithm [15] with novel
statistical representation of anomalies to solve the problem of
the presence of unseen anomalies.

• We show the problem can be solved analytically with fewer
heuristics and can detect both seen and unseen anomalies.
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2. CONVENTIONAL UNSUPERVISED ANOMALY
DETECTION USING VAE

2.1. Variational autoencoder (VAE)

Variational autoencoder [25] models transformations between origi-
nal feature space and simple latent Gaussian distributions. Encoders
transform feature space into Gaussian distributions, and decoders
transform Gaussian distributions into feature space. Both are com-
posed of neural networks. VAE aims at maximizing marginal like-
lihood p(x;θ), where x is a feature vector and θ is a vector that
includes all parameters in the decoder p(x|z;θ), where z is the la-
tent variable. The marginal likelihood, which is intractable [25], is
approximated by the evidence lower bound (ELBO) defined as

L(θ,ϕ;x) = ⟨log p(x|z;θ)⟩q(z|x;ϕ) −KL[q(z|x;ϕ)||p(z)],
(1)

which satisfies L(θ,ϕ;x) ≤ log p(x;θ), q(z|x;ϕ) is the encoder
parameterized by ϕ, KL[·||·] denotes Kullback-Leibler (KL) diver-
gence, and ⟨·⟩p(·) denotes expectation over a distribution p(·). To
derive the training algorithm, we approximate the expectation using
finite L samples of z

L(θ,ϕ;x) ≃ 1

L

∑
l

log p(x|z(l);θ)−KL[q(z|x;ϕ)||p(z)],

(2)

z(l) ∼ q(z|x;ϕ), l ∈ {1, 2, · · ·L} , (3)

where ∼ means sampling from the right-hand distribution. The stan-
dard prior choice is Gaussian: p(z) = N (z; 0, 1), and a linear
combination constant C is also added to improve performance [26].
Then, the single-dimensional Gaussian prior version of the maxi-
mization target is

L(θ,ϕ;x) ≃
1

L

∑
l

log p(x|z(l);θ)− C ·
(
−1

2
− log σ +

1

2
σ2 +

1

2
µ2

)
.

(4)

We omitted the notation of dependence between x, θ and µ, σ2 for
simplicity. The first term is the reconstruction loss, and the second is
a dissimilarity function between prior distribution of latent variables
and the variables emitted from an encoder. The first one tends to fit
the reconstructed vector to the original vector, whereas the second
keeps the latent variables near to the point of origin.

2.2. Anomaly detection using VAE

VAE has been adapted to anomaly detection in an unsupervised man-
ner [15, 16] and is considered to effectively learn representations of
feature vectors [16]. The basic strategy for anomaly detection is to
measure the magnitude of reconstruction loss. In the training phase,
the VAE is trained with collected samples labeled normal. However,
the samples labeled anomalies cannot be used. Given the unlabeled
samples, the model can reasonably reconstruct them with low recon-
struction loss if the samples are normal. If the samples are anoma-
lies, they cannot be reconstructed sufficiently, which causes recon-
struction loss to rise. If we set a pre-defined threshold and define the
reconstruction loss as the anomaly score, the samples can be identi-
fied as “anomalies” when the anomaly score exceeds the threshold,
the same as the conventional outlier detection.

Fig. 1: Visualization of proposed anomaly prior.

3. SUPERVISED ANOMALY DETECTION BY PRIOR
MODIFICATION OF VAE (PROPOSED)

3.1. Prior distribution and KL divergence for anomalies

Our assumption is that anomalies are “not normal.” In other words,
anomalies are regarded as the complementary set of the normal set;
the normal region and the anomalous region are both mutually exclu-
sive and collectively exhaustive. Using a probabilistic density func-
tion for normal pn(z) and anomalous pa(z), we initially formulated
this relationship as

pa(z) ≡
1

Y ′

(
max
z′

pn(z
′)− pn(z)

)
, (5)

where the constant Y ′ aims to satisfy this equation as a probabilistic
distribution. If pn(z) is a uniform distribution, this definition sat-
isfies the property of the complementary set. The main problem is
actually Y ′ is infinity because the mass of the distribution explodes.
To ensure pa(z) is a probabilistic distribution, we multiply a dis-
tribution pw(z) that is wide enough for each dimension. Then the
distribution is

pa(z) ≡
1

Y
pw(z)

(
max
z′

pn(z
′)− pn(z)

)
, (6)

where Y is the finite normalizing constant.
Using this as a prior distribution, we expand the conventional

unsupervised VAE into a supervised one to distinguish anomalies in
the latent space. Since we set the conventional VAE as the repre-
sentation for normal samples and it uses a Gaussian distribution as
a prior, we also set the Gaussian distribution to pn(z) and pw(z) to
make (6) the representation for anomaly samples. Then, the single-
dimensional version of pa(z) shown in Fig. 1 can be written as

pa(z) ≡
1

Y
N (z; 0, s2){max

z′
N (z′; 0, 1)−N (z; 0, 1)}, (7)

where the constants in this equation are described as

max
z′

N (z′; 0, 1) =
1√
2π

, (8)

Y =

∫ ∞

−∞
pa(z)dz =

1√
2π

{1− 1√
s2 + 1

}, (9)
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and a hyper-parameter s2 that determines the width of the distribu-
tion. We defined the multi-dimensional version as a product of each
dimension composed of the single-dimensional version. Therefore,
we derive the single-dimensional version of KL divergence below.

By substituting pa(z) to the KL divergence in (2), the KL diver-
gence can be rewritten as

KL[q(z|x;ϕ)||pa(z)] =∫ ∞

−∞
N (z;µ, σ2) log

N (z;µ, σ2)
1
Y
N (z; 0, s2){ 1√

2π
−N (z; 0, 1)}

dz.

(10)

This equation is decomposed as

KL[q(z|x;ϕ)||pa(z)] =∫ ∞

−∞
N (z;µ, σ2) logN (z;µ, σ2)dz

+ log Y

−
∫ ∞

−∞
N (z;µ, σ2) logN (z; 0, s2)dz

−
∫ ∞

−∞
N (z;µ, σ2) log{ 1√

2π
−N (z; 0, 1)}dz. (11)

By applying Taylor series expansion of the logarithmic function and
linear approximation defined as log(x + 1

2π
) ≃ − log 2π + 2πx

to the fourth term of (11), the KL divergence can be approximately
calculated as

KL[q(z|x;ϕ)||pa(z)]

≃
√

2π

σ2 + 1
exp

(
−µ2

2 (σ2 + 1)

)
+

µ2 + σ2

2 s2
− log σ + log s+ log

(√
s2 + 1− 1

)
−

log
(
s2 + 1

)
2

+
log(2π)− 1

2
. (12)

Fig. 2 shows the KL divergences of normal and anomalous cases.
Whereas the conventional VAE for normal cases works as a regu-
larizer that forces latent variables to be located near to the point of
origin, the proposed VAE for anomalous cases forces latent variables
to be located far from the point of origin when the estimated standard
deviations are small.

3.2. Implementation of proposed method

The anomaly score for the proposed model should be the KL di-
vergence between the normal case prior N (z; 0, 1) and the encoded
distribution N (z;µ, σ2) since its latent space represents normal and
anomaly data by using dissimilarity from N (z; 0, 1). To avoid the
curse of dimensionality [27], an anomaly score calculated in low-
dimensional latent space such as KL divergence may be preferable.
We also use evidence lower bound and conventional reconstruction
loss for comparison. The evidence lower bound is the sum of the
reconstruction loss and the KL divergence.

We adopt an alternating training procedure. For each epoch of
VAE training, we inserted an epoch using anomalous training data
under the proposed anomaly prior. If we have no anomalies to train,
this procedure is equivalent to the conventional VAE anomaly detec-
tion [15]. Balancing the weight of reconstruction loss and KL di-
vergence term has been found to be important for practical use. We
set C = 10 only in the training procedure and when the proposed
anomaly prior is used.

(a) Normal prior case (b) Anomaly prior case

Fig. 2: Visualization of KL divergences for normal and anomaly pri-
ors. Latent variables near zero mean have high KL diver-
gence in anomaly prior when they have small variance.

(a) 9 vs 9̄ condition. (b) Case 3 condition.

Fig. 3: Latent space visualization of proposed CS-VAE model us-
ing its decoder trained by MNIST. Ranges shown are square
of [−10, 10]. Normal patterns are encoded at center, and
anomaly patterns surround them.

4. EXPERIMENTS

4.1. MNIST

The MNIST [28] dataset is publicly available and consists of hand-
written images of digits 0-9. We constructed two kinds of evaluation
tasks. Task 1: N vs. N̄ . In this task, we let one digit be a seen
anomaly, the other digits be normal, and a uniform noise be an un-
seen anomaly. The seen anomaly detection task is similar to that
of An and Cho [15]. Task 2: three groups of digits. The digits are
tagged as normal, seen anomalies, or unseen anomalies. The tag-
ging patterns are based on numerically ascending order, and digits
are grouped into three categories: 1, 2 and 3; 4, 5, and 6; and 7, 8,
and 9. The details are shown in Table 1.

In the following experiments, we used Adam with batch size
100 and elapsed 200 epochs to train the network. The encoder and
decoder are composed of three-layer perceptrons with 500 hidden
units. Two latent variables are used. The number of samples L to
approximate integration is set to 1 in both training and evaluation in
all experiments. The hyper-parameter s2 is set to 400. We used the
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Table 1: Experimental conditions: U [0, 1] is a multidimensional
uniform distribution ranging [0, 1]. In the training proce-
dure, we used samples labeled “normal” for all models,
“seen” for only the proposed model, and “unseen” for no
models.

task normal seen unseen
1 (N vs N̄ ) 0, · · · , 9 w/o N N U [0, 1]
2 (Case 1) 1, 2, 3 4, 5, 6 7, 8, 9
2 (Case 2) 4, 5, 6 7, 8, 9 1, 2, 3
2 (Case 3) 7, 8, 9 1, 2, 3 4, 5, 6
Air conditioner usual sound failure sound U [0, 1]

area under the receiver characteristic curve (AUROC) to evaluate de-
tection performance. If we can distinguish normal and anomaly sam-
ples completely, the AUROC value is 1. If we cannot, the AUROC
value is 0.5. If the scores are inverted between normal and anomaly
samples completely, the AUROC value is 0. The results are shown
in Table 2. The VAE with reconstruction loss (RL) is regarded as a
single sampling version of the existing work [15].

From Table 2, we can observe the proposed complementary set
VAE (CS-VAE) detects anomalies better than the unsupervised con-
ventional VAE especially in the seen condition and equal to or better
than the unsupervised one in the unseen condition.

In the unseen condition in Task 1, both the conventional and
proposed models detect unseen uniform noise anomalies well. How-
ever, the proposed algorithm using only the KL divergence score
degrades performance. This may be because the latent variable may
occur at the center when the model encounters samples not contained
in the training data. However, reconstruction loss produced by a de-
coder may still be large because the decoder will decode as if unseen
anomaly samples were normal samples. Therefore, if we use ELBO,
which is the sum of reconstruction loss and KL divergence, we may
avoid this effect.

In the seen condition in Task 1, we can observe the conventional
VAE is not good at detecting 1, 7, and 9 as anomalies. This is a
similar tendency to that in the prior work [15]. On the other hand, the
proposed model detects such anomalies well by using ELBO and KL
scores. The proposed model using ELBO scores is especially good at
stably detecting anomalies, whereas the proposed model using only
KL scores is not good at detecting 8 as an anomaly.

In Task 2, the proposed model using ELBO scores also detects
anomalies better than the conventional method regardless of whether
they are seen or unseen. Thus, the proposed method is also good at
detecting anomalies when those unseen anomalies look similar to
the seen ones. Fig. 3 shows that the normal and anomaly samples
are separated in the latent space while they are transforming contin-
uously.

4.2. Air conditioner failure sound

We also tried detecting real-world industrial anomalies. This ex-
periment had 10 epochs. A 40-dimensional mel-filterbank acoustic
feature for each 10 ms and its ∆ and ∆∆ are used. The reconstruc-
tion loss is changed to mean squared error. We defined the usual
operation sound as normal and the sound after failure as anomalous.
The detailed conditions and results are shown in Tables 1 and 2.

We can see both the conventional and proposed models detect
anomalies perfectly when using reconstruction loss and ELBO.
However, the performances of the proposed method using KL scores
are greatly improved. As we observed that ELBO or KL scores work
better than reconstruction loss score in the previous MNIST experi-

Table 2: Comparison of AUROCs[%] (higher the better). Best
scores before rounding in bold. Proposed method is good
at detecting anomalies that conventional method is not (un-
derlined).

model VAE (Conventional) CS-VAE (Proposed)
score RL[15] ELBO KL RL ELBO KL

MNIST Task 1 (unseen anomaly detection)
0 vs 0̄ 100.0 100.0 39.7 100.0 100.0 30.1
1 vs 1̄ 100.0 100.0 59.8 100.0 100.0 73.7
2 vs 2̄ 100.0 100.0 58.6 100.0 100.0 0.2
3 vs 3̄ 100.0 100.0 37.5 100.0 100.0 2.8
4 vs 4̄ 100.0 100.0 24.7 100.0 100.0 29.8
5 vs 5̄ 100.0 100.0 40.8 100.0 100.0 9.6
6 vs 6̄ 100.0 100.0 54.1 100.0 100.0 1.0
7 vs 7̄ 100.0 100.0 6.2 100.0 100.0 4.4
8 vs 8̄ 100.0 100.0 49.0 100.0 100.0 1.2
9 vs 9̄ 100.0 100.0 54.9 100.0 100.0 4.3

MNIST Task 1 (seen anomaly detection)
0 vs 0̄ 94.6 94.5 50.2 85.7 97.6 98.9
1 vs 1̄ 58.6 58.4 38.7 2.8 93.2 99.0
2 vs 2̄ 95.5 95.5 41.3 92.9 98.7 95.1
3 vs 3̄ 85.1 84.9 38.6 95.7 97.2 91.8
4 vs 4̄ 74.7 74.7 40.1 89.4 97.0 94.5
5 vs 5̄ 85.4 85.4 46.7 95.6 98.3 86.0
6 vs 6̄ 93.0 93.0 41.9 61.9 97.0 97.5
7 vs 7̄ 66.6 66.5 41.7 48.9 94.5 96.9
8 vs 8̄ 85.7 85.3 29.7 86.8 91.9 68.5
9 vs 9̄ 59.7 59.2 24.8 65.6 81.9 70.4

MNIST Task 2 (unseen anomaly detection)
Case 1 93.1 93.1 50.6 83.0 93.2 74.6
Case 2 80.5 80.5 43.8 87.2 96.3 83.9
Case 3 88.1 88.0 57.6 89.6 90.0 71.3

MNIST Task 2 (seen anomaly detection)
Case 1 95.0 95.0 52.0 72.2 98.7 98.7
Case 2 84.9 84.6 42.5 63.1 97.2 97.6
Case 3 72.8 72.6 56.7 56.6 98.0 98.2

Air conditioner failure sound detection
unseen 100.0 100.0 50.0 100.0 100.0 100.0
seen 100.0 100.0 98.3 100.0 100.0 99.8

ment, we can expect the proposed model to work stably regardless
of task difficulties under real-world conditions.

5. CONCLUSION

We presented a supervised anomaly detection method based on a
variational autoencoder (VAE). By defining the property of unseen
anomalies by using a complementary set and representing it as a
prior, we analytically solved the KL divergence term of VAE for
anomalies with fewer heuristics. We tested the proposed algorithm
on MNIST (Tasks 1 and 2) and in a real-world air conditioner failure
sound detection task. The results revealed that the proposed method
detects seen anomalies better than and unseen anomalies as well
as the conventional unsupervised VAE. We also found that the pro-
posed model using an evidence lower bound anomaly score detected
anomalies stably in all the tested tasks.
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