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ABSTRACT

This paper investigates techniques to transfer information
between deep neural networks. We demonstrate that a stu-
dent network, which has access to information computed by a
teacher network on the training data, learns faster, can be less
deep and requires less labeled examples to achieve a given
performance level. For that we force the student to mimic
the teacher by adding a penalty term to the student’s objec-
tive. We evaluate different penalty terms: (1) mean squared
error between the cost gradients, (2) the Jacobian of the
pre-softmax layer, (3) its row-summed version, (4) the cost
gradient differences to standard double backpropagation and
(5) a targeted double backpropagation via gradient derived
masks. The Jacobian method improves the accuracy propor-
tional to the difference in training examples, in contrast to the
cost gradient. If the difference in accuracy between teacher
and student is large enough, we find an improvement from
the Jacobian information, even if both had seen the same
training data. This indicates that information transfer has a
regularization effect.

Index Terms— Neural networks, attention transfer,
student-teacher learning, network compression

1. INTRODUCTION

Due to increased computational capacities, availability of
open source datasets and advancements in theoretical re-
search, Deep Neural Networks (DNNs) currently achieve
excellent performance in a wide range of applications, e.g.,
image classification [8] and quality assessment [3], natural
language processing [4], genomics [16] or strategic game
playing [19]. Though they perform well on their respective
measures, DNNs suffer from a high computation cost during
inference, as architectures may contain billions of trainable
parameters [5], and from interpretability issues. This lim-
its their usability on certain tasks, for example offline speech
recognition on a mobile device, or transcriptomics, where one
would like to know, which DNA motif led the protein to bind.
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The lack of understanding the decision process also prohibits
the user from implementing already known information, be it
from another classifier or from a domain expert.

In recent years researchers have started to tackle these
problems. For instance, there have been efforts to speed up in-
ference by engineering new chip architectures, e.g. Google’s
Tensor Processing Unit [10], by compressing the network [7]
or by introducing fast fourier transform convolutions [13].
Similarly, different techniques to explain a networks decision
process have been investigated. The authors of [20] inter-
preted neural network predictions by computing the partial
derivatives of the logits with respect to input, more recent ap-
proaches involve the calculation of each neuron’s contribution
to the decision [2, 14]. A comparison of methods for explain-
ing DNN predictions can be found in [18, 15].

This paper addresses both problems by investigating dif-
ferent ways for training of a shallower architecture (student
network) with additional information from the explanations
of a deeper one (feacher network). Hinton et al. [9] proposed
knowledge distillation, where the student network is trained
additionally to the labels on the logits of deeper architectures,
representing the unnormalized probabilities of class member-
ship. Zagoruyko and Komodakis [21] used the minimization
of the L? distance between the gradients of the cost function
with respect to the input to transfer information between two
image recognition architectures trained of CIFAR-10. Ross
et al. [17] used the sum of the logits’ gradients to force the
network into a certain decision strategy, by adding matrices,
which specify at which entries of the input the summed gra-
dients should be close to zero.

Building on these works, we investigate different tech-
niques to transfer information between a teacher and student
network. We compare (1) minimizing the mean squared error
(MSE) between the cost gradient, (2) the gradients of the log-
its and (3) their summed version. Additionally, we compare
(4) minimizing the cost gradient distance to standard double
backpropagation (DB) and (5) a targeted DB with target ma-
trices derived from the teacher’s gradients. We find that infor-
mation transfer between neural networks with the Jacobian
of the pre-softmax layer improves performance, even when
teacher and student had seen exactly the same training data.

This paper is organized as follows. The next section intro-
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Fig. 1: Schema of student learning from teacher.

duces the information transfer methods. Section 3 reports the
experimental results and Section 4 concludes the paper with a
brief discussion.

2. INFORMATION TRANSFER BETWEEN
NEURAL NETWORKS

In student-teacher learning, a teacher network T provides ad-
ditional information to a student network S in order to facil-
itate (or speed up) the learning process of the student. Since
both networks can have different architectures, the teacher
cannot simply share its weights, but rather has to share a quan-
tity which is present at both sides. Here we use gradient in-
formation, i.e., so-called sensitivity maps, for the information
transfer. These maps are computed for each training sam-
ple by both networks and, abstractly speaking, provide infor-
mation about the networks’ decision processes. Through the
minimization of the MSE between the student’s and teacher’s
sensitivity map, the student network is forced to mimic the
teacher network. This teacher’s guidance helps the student
to focus on the important (i.e., sensitive) locations in the in-
put, which significantly facilitates and speeds up the learning
process. Fig. 1 summarizes the student-teacher learning. The
student optimizes an objective

Ls=LSP + ALLF (1)

which consists of the standard cross entropy loss LgE , cap-
turing the error between the predictions and the true labels,
and the information transfer loss LLT, specifying the mis-
match between the information derived on the student and on
the teacher side. The parameter A trades-off the two losses.

In this paper we compare different information transfer
losses. The first method computes partial derivatives of the
student’s and teacher’s cost function. With that the informa-
tion transfer loss is given by
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where D is the size of the n-th input sample ™ and N denotes
the number of samples in a batch. This term indicates where

a change in the input would lead to a shift in the similiarity
between network prediction and label.

The second method computes the full Jacobian matrix of
the pre-softmax layer. The rows of this matrix correspond to
the subfunction of each output node of this layer, the columns
to each entry of the input vector. As the softmax function
only normalizes these outputs, also called logits, to a prob-
ability distribution, we ignore it. This can be interpreted as
seperately creating a sensitivity map for each class, that indi-
cates, where a slight shift in the input would lead to a increase,
decrease or no change of the predicted class probability. Thus
the information transfer loss is given by
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where C' is the number of classes and gi’?
@

of the Jacobian with dimension C' x D.
The third method sums the rows of the Jacobian before
minimization. Then, the information transfer loss is given by
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This can be interpreted as creating a single map, that shows,
which parts are important or unimportant for class prediction.
In the fourth method the squared gradient is minimized
by itself, which is akin to minimizing the distance to the null
gradient, i.e., the information transfer loss is given by
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with M, ; = 1 for all n, j, This is known as the double back-
propagation method [6].

The fifth method penalizes different parts of the sum in
eq. 5 by multiplying the squared gradient of a single input
with matrix M, ; before minimizing it. In our experiments
we create two matrices from the gradients of the teacher, one
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that only minimizes the squared gradient, if the squared gradi-
ent of the teacher at this entry was below a certain percentage
of the maximum, and one, that penalizes the gradient ever-
where, but stronger, if the corresponding value was below the
teacher’s threshold value.
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3. EXPERIMENTAL EVALUATION

3.1. Models & Setup

Four networks are used in the experiments: A fully-connected
(FC) student and teacher with two and four trainable lay-
ers, respectively, and a convolutional student and teacher with
two and four trainable layers, respectively. All networks use
ReLU activation functions and a final softmax layer. For the
FC networks we choose output dimensions of [1000,10] for
the student and [1000,500,200,10] for the teacher. Both con-
volutional networks had a stride of 1 and valid padding. For
the convolutional student network, we set kernel size and out-
put depth to [(15,10),(14,10)], for the convolutional teacher
to [(10,10),(9,25),(8,100),(4,10)]. We omitted pooling, as the
input size is small enough.

All networks were trained of the MNIST dataset for
50000 steps with a batch size of 50 and an initial learning
rate of 0.0001 with ADAM [11] in standard setting (81 = 0.9,
B2 =0.999, ¢ = 1le — 8). All biases were initialized with
0 and all weights were initialized from a truncated normal
distribution with a standard deviation of 0.01. To simplify,
we dropped techniques such as batch normalization or drop-
out and did not use weight decay. A was set to 0.1 for the
summed and full Jacobian methods and 107 for the cost gradi-
ent method; these values were chosen in an initial experiment
such that the initial value of the information transfer term was
around 0.01% to 1% of the initial cross entropy term. All
experiments were implemented in TensorFlow 1.0.0 [1], the
networks were constructed with the LRP TF wrapper [12].

3.2. Comparison of information transfer methods

The initial experiment investigated, if using the gradient in-
formation increases the student’s accuracy, even if student
and teacher have seen the same amount of data. We trained
the convolutional and FC teacher on 20000 randomly sam-
pled and balanced images and computed the sensitivity maps.
Then we trained the convolutional student on the information
from the convolutional teacher and the FC student on the in-
formation from the FC teacher. We limited the number of

Table 1: Average test set accuracy of different methods.

#examples | 50 | 1000 | 20000
FC

only labels 0.6849 | 0.8882 | 0.9760

cost 0.6900 | 0.8981 | 0.9816

full Jacobian 0.8056 | 0.9239 | 0.9761

summed Jacobian | 0.6928 | 0.8879 | 0.9763
convolutional

only labels 0.7186 | 0.9160 | 0.9814

cost 0.7137 | 0.9272 | 0.9854

full Jacobian 0.7540 | 0.9359 | 0.9819

summed Jacobian | 0.7250 | 0.9216 | 0.9816

training examples for the students to 50, 1000 and 20000 im-
ages. If information transfer is to occur, we would expect a
bigger increase of the student’s accuracy, when the difference
between the number of training examples is higher. For com-
parison we added student baseline networks, which only had
the label information. See Table 1 for the accuracies on the
whole test set achieved at various training set sizes averaged
over 7 runs each. On average the FC teacher network achieved
an accuracy of 0.973, the convolutional teacher network had
an accuracy of 0.987.

For both architectures, the full Jacobian method improved
the accuracy of the student over the only label baseline, if
the network had only been trained on 50 examples. This per-
formance increase was significant with p < 0.05 for the FC
model according to the Wilcoxon rank-sum test. At the 1000
examples mark the results were significant for both types,
but when the training set size had been increased to 20000,
the improvement became smaller and we found no significant
differences. Interestingly, even though both the convolutional
teacher and baseline student achieved a higher accuracy at the
50 examples mark, the FC student’s accuracy gain with addi-
tional information was higher compared to the convolutional
student’s. Thus, the FC maps seem to contain more accessi-
ble information. Adding the summed Jacobian term had lit-
tle effect overall: While it increased the accuracy slightly in
the beginning, at the 20000 images mark there was no effect
of improving the student’s performance. The cost gradient
method showed a reverse effect: While it had a negative effect
on the convolutional student and a slight positive effect on the
FC student at the 50 images mark, it was the only method that
improved the networks accuracy significantly, when student
and teacher had seen the same data. This indicates that this
type of information transfer may have a regularization effect.

3.3. Across architecture transfer

In a second experiment we tested, if the difference in accu-
racy gain between convolutional and FC student network was
due to the character of sensitivity maps and if a network could
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Table 2: Average test set accuracy of the crossover experi-

ment.
# examples \ 50 \ 1000 \ 20000
FC to convolutional
only labels | 0.7186 | 0.9160 | 0.9814
cost 0.7109 | 0.9179 | 0.9846
full Jacobian | 0.8101 | 0.9336 | 0.9815
convolutional to FC
only labels | 0.6849 | 0.8882 | 0.9760
cost 0.6945 | 0.8985 | 0.9817
full Jacobian | 0.7531 | 0.9221 | 0.9780

imitate different sensitivity maps without a loss of accuracy.
While we reused the teachers and the baseline students, we
dropped the summed Jacobian condition and this time the FC
student network received the sensitivity maps from the con-
volutional teacher and vice versa.

Table 2 summarizes the results. The full Jacobian method
showed the same behavior as in the previous experiment.
However, while at the 50 images mark the FC network with
additional information earlier achieved a higher test set accu-
racy than the convolutional one, after switching the teacher’s
gradients, this ranking changed, indicating that indeed the FC
maps were more useful. Although, this time at the 20000 im-
ages mark the results for the convolutional to FC setup were
significant. Thus, we find that even if student and teacher
had seen the same training data, if the difference between
the accuracy of the teacher and the baseline student was high
enough, adding the logits’ gradients improved the student’s
performance. Once more, the cost gradient method’s impact
at the 50 examples mark was positive for the FC student’s
performance and negative for the convolutional student’s ac-
curacy. Comparing this to results of the first experiment, we
see that the difference in the direction is not due to the con-
volutional teacher’s maps. As the training set size increased
to 1000 images, though it was positive for both, only the
effect of the convolutional to FC setup was significant, while
at 20000 training images results were statistically significant
for both. The gain from the cost gradient still seemed to be
independent of the difference in information. In Figure 2 we
see the sensitivity maps for class one of a FC teacher, a con-
volutional student without information and a convolutional
student with the added information from the FC teacher’s
Jacobian. After adding these, the map of the student clearly
resembles more that of the teacher.

3.4. Targeted double backpropagation

With the knowledge from the previous experiment, we inves-
tigated if the effect from minimizing the differences between
student and teacher cost gradient was from penalizing the gra-
dient or due to a real information transfer. Thus, we compared

i £ =
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Input FC teacher  Only labels Conv student

Fig. 2: The images from left to right show the input sample,
the map for class one of the FC teacher, the baseline student
and the student with the Jacobian information

Table 3: Average test set accuracy of the targeted double
backpropagation experiment.

M=1 cost diff | cost diff + M=1
0.9854 | 0.9850 0.9852

p=0.2 | p=0.5 | p=0.7 | p=0.9
M € {0, 1}D 0.9845 | 0.9845 | 0.9844 | 0.9848
M e {1, 2}D 0.9848 | 0.9842 | 0.9838 | 0.9843

it to standard DB and our targeted DBs, yet also created a
combination of minimizing the cost gradient differences and
standard DB. For all methods we set A = 1e7. We trained the
convolutional teacher as before with an average test set ac-
curacy of 0.988. Table 3 shows the average test set accuracy
of 6 runs of the convolutional student. Neither the MSE cost
difference, nor the cost difference plus standard DB method
could outperform standard double backpropagation, while the
combination even leads to a worse performance than just stan-
dard DB. Similar results were obtained for the targeted DB:
None of the M € {0,1}” maps achieved better results and
there was no discernible trend when we changed p. Unexpect-
edly, also none of the thresholds of the M € {1,2}” binary
mask reached the effect of the standard DB, but we have to
note, only the M € {1,2}P, p = 0.7 results differed signifi-
cantly from the best result.

4. CONCLUSION

We showed, that information transfer between neural net-
works with the Jacobian of the pre-softmax layer is possible,
even when teacher and student had seen exactly the same
training images. As the cost gradient’s effect was indistigu-
ishable from DB, the Jacobian seems to have better prospects
as a means of not only improving accuracy of the student,
but as well as changing the decision rules the network is us-
ing, though the effectiveness might depend on the network’s
architecture. A comparison could be to knowledge distilla-
tion [9] as one could possibly improve performance further
or force the same decision strategy, when the gradient con-
straints were added. As the gradients are only one possible
choice of explaining a network’s decision, one could likewise
investigate the use of other methods like LRP [2].
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