
AN UPPER-BOUND ON THE REQUIRED SIZE OF A NEURAL NETWORK CLASSIFIER

Hossein Valavi, Peter J. Ramadge

Department of Electrical Engineering, Princeton University

ABSTRACT

There is growing interest in understanding the impact of ar-
chitectural parameters such as depth, width, and the type of
activation function on the performance of a neural network.
We provide an upper-bound on the number of free parameters
a ReLU-type neural network needs to exactly fit the training
data. Whether a net of this size generalizes to test data will
be governed by the fidelity of the training data and the appli-
cability of the principle of Occam’s Razor. We introduce the
concept of s-separability and show that for the special case of
(c−1)-separable training data with c classes, a neural network
with (d + 2c) parameters can achieve 100% training classifi-
cation accuracy, where d is the dimension of data. It is also
shown that if the number of free parameters is at least (d+2p),
where p is the size of the training set, the neural network can
memorize each training example. Finally, a framework is in-
troduced for finding a neural network achieving a given train-
ing error, subject to an upper-bound on layer width.

Index Terms— Neural Networks, Deep Learning

1. INTRODUCTION

Selecting architectural parameters of a neural network (e.g.,
the depth and width of the layers) has been a long-standing
and challenging problem. It is an important problem for theo-
retical reasons, and also for guiding the design of neural net-
works for a wide range of practical applications [1, 2, 3, 4, 5].
The standard method for selecting neural network (N.N.) pa-
rameters has been based on several empirical evaluations on
a given dataset. Training is done on a few different candi-
dates and the one that generalizes best is picked as the final
classifier. However, estimating the required size of a neural
network before training is of great importance. Of course it
is also important that the selected architecture is easily train-
able and that it generalizes well. Earlier results [6, 7, 8, 9,
10, 11, 12, 13] have shown that a two layer neural network
with very wide hidden layer is a universal function approx-
imator. However, such neural networks are not of practical
interest due to the very large width of the hidden layer. Re-
cently, neural networks have been designed and trained with
more than a thousand layers to attain higher performance on
several applications [3]. Typically, such neural networks have
far more parameters than the size of the training data. This
raises the question: are all of these parameters really needed.

This question has multiple dimensions: are the parameters
needed to obtain an accurate classifier on the training data, or
to provide faster training, or better generalization, and so on.
Our goal is restricted to investigating how many free param-
eters are needed to fit the training data exactly. This provides
an upper-bound on the number of free parameters a neural
network needs to classify the training data well. The guiding
principle is Occam’s razor: a parsimonious neural network is
more likely to generalize well to testing data. To provide an
upper bound, we introduce a network construction algorithm
that can exactly fit the training data provided the architectural
parameters are chosen appropriately. In detail, we first show
that for a dataset containing c classes, and satisfying a prop-
erty we call s-separable, a neural network with only 2 layers
and (d+2c) parameters can perfectly fit the dataset, where d is
the dimension of data. An algorithm for the non s-separable
case is also discussed (§3). These results provide an upper-
bound on the number of parameters a neural network needs to
classify a training data. Section 3 introduces the construction
algorithm. Two immediate applications are the implementa-
tion of any arbitrary quantizer and any desired truth-table. Fi-
nally, we show how an l layer N.N. can be formed to precisely
map each training data to its corresponding label.

2. PRIOR WORK

We focus on finding an upper-bound on the size (i.e., number
of free-parameters) for a N.N. that can exactly fit a training
dataset. Prior work has studied this problem through func-
tional analysis ([6, 7, 8, 9, 10, 11, 12, 13]), or via evaluating
the expressivisity in terms of the number of linear regions the
final decision boundary can form ([14, 15, 16, 17, 18]), or via
studying the trajectory length of the output layer ([19]). In
contrast we address the issue by using a network construc-
tion algorithm. This is inspired by the recent work presented
in [20]. This work shows that conventional complexity met-
rics (such as VC-dimension or Rademacher complexity) are
unable to adequately characterize the complexity of a neural
net. Further, the authors prove that a 2 layer N.N. with p neu-
rons in the hidden layer, can fit a random noise training set
of p examples . Our goal is to analyze the expressive power
of a neural net for classification. We aim to understand how
many parameters are needed to classify the training data ex-
actly and how to bound the architectural parameters of such
a neural net. That particular network may not generalize, but

2356978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

c– neurons

m–neurons

d–neurons

[A]
[W]-b(1)

-b(2)

-b(c)

...

...
...

xj,1

xj,2

xj,3

xj,d

Oj,1

Oj,m

Input
layer

Hidden
layer

Ouput
layer

Fig. 1: Constructed neural network with one hidden layer of size
c that achieves 100% training data classification accuracy. A ∈
Rd×c = a1T , a ∈ Rd,1 ∈ Rc and b ∈ Rc encode the first layer’s
parameters. W ∈ Rc×m encodes the parameters of the last layer.

under the principle of Occam’s razor, it bounds of the size of
neural network that is likely to generalize well.

3. NETWORK CONSTRUCTION

This section introduces an algorithm for constructing a neural
network classifier that maps each example in a labeled train-
ing set to its corresponding label. This is a preliminary result.
As two immediate applcations, we show how to apply this
construction to implement any quantizer, and to implement
any truth-table. Using N.N.s to implement truth tables is a
classical problem (see [21], [22], [23], [24]).

3.1. s-Separable Training Data

Let {(xi, yi)}pi=1 be a dataset with xi ∈ Rd and yi ∈ [1 : c].
We say that the dataset is s-separable if there exist a vector
a in Rd such that projecting the data onto a creates (s + 1)
intervals each containing points with the same label. Note
that s can be larger than (c − 1); which means all data from
one particular class need not be in the same interval. This is a
broader form of linear separability for a c class dataset.

Lemma 3.1. Consider a N.N. with m output neurons, and let
f be an injective mapping from the class labels into Rm. If
the training dataset is (s − 1)-separable, then there exists a
neural network with depth 2 and (d+ (m+ 1)s) parameters
that maps training examples in class j to f(j).

Proof. We first prove the result for (c − 1)-separable data.
W.l.o.g, assume the first k1 examples belong to class 1, the
next k2 to class 2, and the last kc to class c. (c−1)-separability
implies there exist vectors a ∈ Rd, b ∈ Rc such that:

b(1) < aTx1 < aTx2 < . . . < aTxk1
< b(2)

< aTxk1+1 < . . . < aTxk2 < b(3)

< . . . < b(c) < aTxkc−1+1 < . . . <aTxp

(1)

We prove that if (1) is satisfied, then the parameters of the
neural network in Fig. 1 can be selected to attain 100% train-
ing classification accuracy. Let the vector hj represent the
output of the first hidden layer (after applying ReLU) when
xj is applied at the input (i.e., hj = ρ((aTxj)1 − b)), and
H ∈ Rp×c be the matrix with hTj on its j-th row. It suf-
fices to find a matrix W ∈ Rc×m such that HW = Y where
Y ∈ Rp×m represents the corresponding labels (e.g., one-hot
encoding of the class-labels). Let f(j) ∈ Rm be the vector
representation of the label of the i-th class. Then, matrix Y
can be written as :

Y =

1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
...

...
...

...
0 0 0 . . . 1

−− f(1)T −−
−− f(2)T −−

...
−− f(c)T −−

 (2)

Denote the first p × c matrix by E and the second matrix
with f(j)T on its j−th row by F . Matrix E has orthogonal
columns and ETE = D, where D ∈ Rc×c is a diagonal
matrix with kj on its j-th diagonal entry. Hence, it suffices
to find a matrix W such that HW = EF or equivalently,
ETHW = DF . The matrix ETH can be written as:

ETH =

(h1 + h2 + . . .+ hk1)

T

(hk1+1 + . . .+ hk1+k2
)T

...
(hkc−1+1 + . . .+ hp)

T

 (3)

Referring to inequality (1), ETH will be a c × c lower
triangular matrix with positive diagonal entries, and hence is
invertible. Setting W = (ETH)−1DF will create a neural
network that perfectly maps each training data onto its corre-
sponding m-dimensional label. The number of parameters of
the N.N. is (d+c+(c×m)) for (a, b,W), respectively. For the
general case of s-separable dataset with (s > c − 1), matrix
Y will not be arranged in the order shown in (2). However, a
permutation matrix P can be found such that PY has the de-
sired form. Then the problem simplifies to finding a matrixW
such that PHW = PY , which can be solved similarly.

If the MNIST digits dataset [25], was (c − 1)-separable
(it is not), the design method outlined above would yield a
N.N. with a hidden layer of 10 neurons and an output layer
of 10 neurons. Such a two layer network trained using the
Adam optimization algorithm [26] can fit 95% of the training
data. Moreover, this trained network achieves 7.4% testing

2357

error. These are not spectacular numbers. But the experiment
suggests that a simple architecture can achieve a great deal,
and the bulk of the complexity is needed to reduce the last
10% of training and testing error.

Corollary 3.1. LetN be a ReLU type N.N. with L hidden lay-
ers. If there exists an injective mapping from the training data
to the output of the penultimate hidden layer, then the param-
eters of N can be selected such that each training example is
mapped to its corresponding label.

Proof. Let f represent the corresponding injective mapping
and consider the last two hidden layers. Since f is injective,
training data get mapped to distinctive outputs at the penulti-
mate hidden layer. Now considering {(f(xj), yj), j ∈ [1 :p]}
as the new training set and using Lemma 3.1, there exist a
N.N. that can map all f(xj) to yj , for j ∈ [1 :p].

As an example, we show how to use Lemma 3.1 to im-
plement an arbitrary quantizer using a neural net. Quantizers
have numerous applications in signal processing.

Corollary 3.2. Let a ∈ Rd, and span(a) be divided into n
disjoint intervals. Let f be a mapping from span(a) to R. If
f maps the elements in each interval to the same real number,
then there exists a N.N. with (d + 2n) parameters that maps
each x in the i-th interval of span(a) to f(i).

Proof. Since it is assumed that all datapoints that fall in each
interval get mapped to the same real number via f , the prob-
lem can be viewed as classification of a (n − 1)-separable
dataset. The construction algorithm introduced in the Lemma
3.1 can be utilized to create the desired neural net.

As a second example, we show how to implement an ar-
bitrary b-bit truth table with a neural net. This result will be
used in later sections of the paper. Unlike conventional meth-
ods that break down the implementation of a truth-table into
a combination of primitive logic gates ([21], [22], [23], [24]),
we show an implementation based on Lemma 3.1.

Corollary 3.3. Any b-bit truth table (with 2b or fewer entries)
can be implemented with a ReLU-type N.N. of depth 2.

Proof. A function f can be found to map entries of a b-bit
truth table to R2b . By doing so, implementing any truth-table
simplifies to a classification problem, i.e., find a classifier that
maps the vectors in R2b to the outputs in the truth-table. Sup-
pose in total, there are p entries that generate c distinct out-
puts. Further, suppose entries are ordered such that the first k1
entries generate result 1, the next k2 entries generate result 2,
etc., and the last kc entries generate result c. One f that gen-
erates a (c − 1)-separable dataset, is f(j) = jej , j ∈ [1 : p],
where ej is the j-th standard basis. By Lemma 3.1, there is a
2 layer ReLU-type N.N. that implements f .

a1

a2

R5 R6R4

R1
R2

R3

R8 R9R7

R10 R11 R12

Fig. 2: Different non-overlapping 2D regions created by diving the
span of two vectors a1, a2 ∈ R2 into 3 and 4 intervals, respectively.

3.2. Beyond s-Separable Data

For the broader case of non s-separable training data, Lem-
mas 3.2 and 3.3 introduce a 4 and an L-layer construction.

Lemma 3.2 (Width). Let {ai}ni=1 be linearly independent
vectors in Rd, and divide span(ai) into ki disjoint intervals,
i ∈ [1 : n]. This partitions Rd into

∏n
i=1 ki regions. Let f

map Rd into Rm with c distinct vectors in its range. If f maps
all points in a region to the same value, then there exists a
neural network with the depth of 4 and (d+n+2(c+

∑
ki))

parameters that implements f .

This lemma sets an upper-bound on the width of a 4-layer
N.N that can exactly classify the training data. The width of
the hidden layers is determined by the number of projection
vectors, number of thresholds, and the number of classes.

Proof. Perfect classification is possible based on the intervals
of span(ai), i ∈ [1 : n], and a truth-table. Lemma 3.1 can
be utilized to implement each classifier in parallel. This will
form the first and second hidden layers. The third and fourth
layers are formed based on Corollary 3.3 for implementing
a truth-table. The above procedure and the desired N.N. are
depicted in Fig. 2 and Fig. 3, respectively.

The lemma below gives a construction for anL-layer N.N.
that exactly classifies the training data. The width of the j-th
hidden layer is at most kj+t, where t is the number of training
examples classified incorrectly by the previous hidden layers.

Lemma 3.3 (Depth). Let {ai}Li=1 be a linearly independent
set in Rd. For i ∈ [1 : L], divide span(ai) into ki disjoint
intervals, such that if a region in the resulting partition of
Rd contains training examples, these examples have the same
label. Then there exists a depth L neural network mapping
each training example to its corresponding label.

Proof. We first prove that there exists an L layer N.N. using
the sign activation function that achieves 100% training accu-
racy. Then, we show how to do this using ReLU N.N.s. The

2358

N.N. is formed in L hierarchical steps; corresponding to L
hidden layers. In the first step, each training example is pro-
jected onto span(a1) and classified w.r.t. k1 intervals along
span(a1). We say that such an interval is homogeneous if all
projected vectors in that interval have the same label. If all
k1 intervals along span(a1) are homogeneous, Lemma 3.1,
gives a 2-layer N.N. with one hidden layer consisting of k1
neurons that can classify all training examples correctly.

Otherwise, let I1, . . . , Iq1 denote the homogeneous inter-
vals and mj = |Ij | denote the number of projected training
examples in Ij , j ∈ [1 :q1]. Let r1 = p−

∑q1
j=1mj . W.l.o.g.,

let {aT1 x1, . . . , aT1 xm1
} ∈ I1, {aT1 xm1+1, . . . , a

T
1 xm1+m2

} ∈
I2, etc, and {aT1 xr1+1}, . . . , {aT1 xp} be in non-homogeneous
intervals. Using the notation from Lemma 3.1, we form the
first hidden layer of the N.N. using h1 = (q1 + r1) neurons,
setting A = a11

T and b = (b1, . . . , bh1
) such that:

b1 < aT1 x1 < . . . < aT1 xm1
<

b2 < aT1 xm1+1 < . . . < aT1 xm1+m2
<

... <
... <

bq1+1 < aT1 xr1+1 < bq1+2 < . . . < bh1
< aT1 xp

By satisfying the above, the first layer with sign activation
maps the original data in Rp to Rh1 , with each x ∈ Ij mapped
to (e1 + · · · + ej), j ∈ [1 : q1], with the remaining examples
mapped to (e1+ · · ·+ eq1+1), . . . , (e1+ · · ·+ eh1

), where ej
is the j-th standard basis in Rh1 .

In the second construction phase, {e1, (e1+e2), . . . , (e1+
· · · + eh1

)} in the first hidden layer, are used as the new
training examples and the above procedure is repeated for the
new projection vector a2. This can be repeated until either
a stopping criterion is reached or all resulting sub-intervals
are homogeneous. Either case requires at most L steps. For
a ReLU-type N.N., a similar method can be used; the differ-
ence being that elements in an homogeneous interval Ij are
going to be mapped to a scalar multiple of (e1 + · · · + ej).
An extra hidden layer, using lemma 3.3, can be added to map
those elements back to (e1 + · · · + ej). Alg. 1 illustrates the
N.N. construction for binary classification.

Computational results on MNIST [25], show that a ReLU
N.N. with 3 hidden layers, each consisting of 10 neurons, can
correctly classify ∼ 95.8% of the training data; about 400
more training examples than a similar 2 layer net, with al-
most equivalent testing accuracy. Suggesting that refinement
of the previously incorrectly classified training examples gen-
eralizes to the testing data.

4. CONCLUSION

Motivated by results in [20], we have given a construction
method for a neural network classifier based on a family of
vector projections and thresholding. This classifier can ex-
actly classify training data, or stop training once the train-

(k1 + · · ·+ kn)

neurons

m
neurons

c

neurons

n

neurons

d– neurons

xj,1

xj,2

xj,3

xj,d

...

...

...

...

...
...

...

Oj,1

Oj,m

Fig. 3: A 4-layer neural network that maps each x ∈ Rd in the j-th
high-dimensional region to f(j).

Algorithm 1 N.N. Arch. Design for binary classification

Input: Data matrix X ∈ Rp×d, labels Y ∈ Rp×m and given
training error ERR.

1: Initialize:
l = 1
Perform SVM to get a1 ∈ Rd

Set k1 thresholds to get b1 ∈ Rk1

err = # points in multi-label intervals
Form the 1st layer of N.N.

while err ≤ ERR
2: X : Remaining data not classified correctly
3: Select al ∈ Rd.
4: Project X onto al
5: Select kl thresholds to find bl ∈ Rkl .
6: Form l-th layer of the N.N.
7: l++

ing error is below a desired error upper bound. By appealing
to principle of Occam’s Razor, this provides an upper-bound
on the size of a neural network classifier that we reasonably
expect to generalize well. There are still open questions on
the best ways to selecting the projection vectors, the thresh-
old values, and obtaining exact generalization bounds. These
questions are the subject of on-going research.

5. REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

2359

[2] X. Pan and V. Srikumar, “Expressiveness of rectifier net-
works,” in International Conference on Machine Learn-
ing, 2016, pp. 2427–2435.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[4] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[5] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10
dataset,” online: http://www. cs. toronto. edu/kriz/cifar.
html, 2014.

[6] K. Hornik, M. Stinchcombe, and H. White, “Multi-
layer feedforward networks are universal approxima-
tors,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[7] K. Hornik, M. Stinchcombe, and H. White, “Universal
approximation of an unknown mapping and its deriva-
tives using multilayer feedforward networks,” Neural
Networks, vol. 3, no. 5, pp. 551–560, 1990.

[8] K. Hornik, “Some new results on neural network ap-
proximation,” Neural Networks, vol. 6, no. 8, pp. 1069–
1072, 1993.

[9] K. Hornik, “Approximation capabilities of multilayer
feedforward networks,” Neural Networks, vol. 4, no. 2,
pp. 251–257, 1991.

[10] K. Funahashi, “On the approximate realization of con-
tinuous mappings by neural networks,” Neural Net-
works, vol. 2, no. 3, pp. 183–192, 1989.

[11] M. Leshno, V. Lin, A. Pinkus, and S. Schocken, “Multi-
layer feedforward networks with a nonpolynomial acti-
vation function can approximate any function,” Neural
Networks, vol. 6, no. 6, pp. 861–867, 1993.

[12] S. Ferrari and R. Stengel, “Smooth function approxi-
mation using neural networks,” IEEE Transactions on
Neural Networks, vol. 16, no. 1, pp. 24–38, 2005.

[13] R. Jones, Y. Lee, C. Barnes, G. Flake, K. Lee, P. Lewis,
and S. Qian, “Function approximation and time series
prediction with neural networks,” Neural Networks, pp.
649–665, 1990.

[14] Y. Bengio and O. Delalleau, “On the expressive power
of deep architectures,” in International Conference on
Algorithmic Learning Theory. Springer, 2011, pp. 18–
36.

[15] R. Pascanu, G. Montufar, and Y. Bengio, “On the num-
ber of response regions of deep feed forward networks
with piece-wise linear activations,” arXiv preprint
arXiv:1312.6098, 2013.

[16] G. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On
the number of linear regions of deep neural networks,”
in Advances in Neural Information Processing Systems,
2014, pp. 2924–2932.

[17] A. Daniely, R. Frostig, and Y. Singer, “Toward deeper
understanding of neural networks: The power of initial-
ization and a dual view on expressivity,” in Advances
In Neural Information Processing Systems, 2016, pp.
2253–2261.

[18] R. Eldan and O. Shamir, “The power of depth for feed-
forward neural networks,” in Conference on Learning
Theory, 2016, pp. 907–940.

[19] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and
J. Sohl-Dickstein, “On the expressive power of deep
neural networks,” arXiv preprint arXiv:1606.05336,
2016.

[20] C. Zhang, S. Bengio, M. Hardt, B. Recht, and
O. Vinyals, “Understanding deep learning re-
quires rethinking generalization,” arXiv preprint
arXiv:1611.03530, 2016.

[21] I. Aleksander and H. Morton, An Introduction to Neural
Computing, vol. 3, Chapman & Hall London, 1990.

[22] S. Chakradhar, V. Agrawal, and M. Bushnell, “Neural
net and boolean satisfiability models of logic circuits,”
IEEE Design & Test of Computers, vol. 7, no. 5, pp. 54–
57, 1990.

[23] I. Taha and J. Ghosh, “Symbolic interpretation of ar-
tificial neural networks,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 11, no. 3, pp. 448–463,
1999.

[24] L. Chua and T. Roska, Cellular Neural Networks and Vi-
sual Computing: Foundations and Applications, Cam-
bridge University Press, 2002.

[25] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwrit-
ten digit database,” AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist, vol. 2, 2010.

[26] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

2360

