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ABSTRACT

We study online training of Long Short Term Memory
(LSTM) architectures in a network of nodes. For this frame-
work, we first provide an LSTM based regression structure.
To train this structure, we put the underlying LSTM equa-
tions in a nonlinear state space form at each node and then
introduce a highly efficient and effective Distributed Particle
Filtering (DPF) based online training algorithm. Here, our
training method guarantees convergence to the optimal train-
ing performance in the Mean Square Error (MSE) sense. We
achieve this performance with communication and computa-
tional complexity in the order of the first order gradient based
methods. In our simulations, we demonstrate significant
performance gains with respect to the conventional methods.

Index Terms— Distributed learning, particle filtering, big
data, online learning, LSTM.

1. INTRODUCTION
Neural networks provide enhanced performance for a wide
range of engineering applications [1, 2] thanks to their highly
strong nonlinear modeling capabilities. Among neural net-
works, especially recurrent neural networks (RNNs) are used
to model time series and temporal data due to their inherent
memory storing the past information [3]. However, since sim-
ple RNNs lack control structures, the norm of gradient may
grow or decay in a fast manner during training [4]. Hence,
simple RNNs are insufficient to capture time dependencies
[4]. To circumvent this issue, a novel RNN architecture with
control structures, i.e., the LSTM network, is introduced [5].
However, since LSTM networks have additional nonlinear
control structures with several parameters, they may also suf-
fer from training issues [5]. To this end, we consider online
training of the parameters of an LSTM structure in a dis-
tributed network of nodes.

The LSTM architectures are usually trained in a batch set-
ting in the literature, where all data instances are present and
processed together [3]. However, for big data applications,
storage issues may arise due to keeping all the data in one
place [6]. Additionally, in certain frameworks, all data in-
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stances are not available beforehand since instances are re-
ceived in a sequential manner, which precludes batch train-
ing [6]. Hence, we consider online training, where we se-
quentially receive the data for training. Note that even though
we work in an online setting, we may still suffer from compu-
tational power and storage issues due to large amount of data
so that distributed architectures are introduced [7]. In this ba-
sic distributed architectures, commonly named as centralized
approach [7], the whole data is distributed to different nodes
and trained parameters are merged later at a central node [3].
However, this centralized approach requires high storage ca-
pacity and computational power at the central node [7]. Addi-
tionally, centralized strategies have a risk of failure at the cen-
tral node. To circumvent these issues, we distribute the pro-
cessing to the nodes and allow communication only between
neighbors, hence, we remove the need for a central node.

For training, one can employ one of the first order gra-
dient based algorithms, e.g., the Stochastic Gradient Descent
(SGD) algorithm, at each node due to their efficiency [3] and
exchange estimates among neighboring nodes as in [8]. How-
ever, since these training methods only exploit the first or-
der gradient information, they suffer from poor performance
and convergence issues. On the other hand, the second or-
der gradient based methods, e.g., the Extended Kalman Fil-
tering (EKF) algorithm, require much higher computational
complexity and communication load while providing supe-
rior performance [3, 9]. In this paper, to provide improved
performance with respect to the second order methods while
preserving both communication and computational complex-
ity similar to the first order methods, we introduce a highly
effective distributed online training method based on the PF
algorithm [10]. Thus, as the first time in the literature, we
introduce an LSTM training method in an online setting for
variable length data sequences. Our training method guar-
antees convergence to the optimal centralized training per-
formance while requiring communication and computational
complexity only in the order of the first order methods.

2. MODEL AND PROBLEM DESCRIPTION
Here, all column vectors (or matrices) are denoted by bold-
face lower (or uppercase) case letters. For a matrix A (or a
vector a), AT (aT ) is its ordinary transpose. The time index
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Fig. 1: Detailed schematic of each node k in our network.

is given as subscript, e.g., at is the vector at time t. I is the
identity matrix, where the size is understood from the context.

We consider a network of K nodes. In this network, we
declare two nodes that can exchange information as neigh-
bors and denote the neighborhood of each node k as Nk that
also includes the node k, i.e., k ∈ Nk. At each node k, we
sequentially receive the desired signal {dk,t}t≥1, dk,t ∈ R and
matrices, {Xk,t}t≥1, defined as Xk,t = [x

(1)
k,t x

(2)
k,t . . .x

(mt)
k,t ],

where x(l)
k,t ∈ Rp, ∀l ∈ {1, 2, . . . ,mt} and mt ∈ Z+ is the num-

ber of columns in Xk,t, which can change with respect to t.
In our network, each node k aims to learn a certain relation
between the desired value dk,t and matrix Xk,t.

In this paper, each node k generates an estimate d̂k,t for
the desired value dk,t using the LSTM architecture [5]. The
input Xk,t is first fed to the LSTM architecture as illustrated
in Fig. 1, where the internal equations are given as [5]:
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where x(l)
k,t ∈ Rp is the input vector, y(l)

k,t ∈ Rn is the output
vector and c(l)k,t ∈ Rn is the state vector for the lth LSTM unit.
Moreover, o(l)k,t, f

(l)
k,t and i(l)k,t represent the output, forget and

input gates, respectively. g(·) and σ(·) are set to the hyperbolic
tangent function and the sigmoid function respectively and
apply vectors pointwise. The operation � represents the ele-
mentwise multiplication of two vectors of the same size. As
the coefficient matrices and the weight vectors of the LSTM
architecture, we have W (.)

k , R(.)
k and b(.)k , where the sizes are

chosen according to the input and output vectors. Given the
outputs of LSTM for each column of Xk,t as seen in Fig. 1,
we generate the estimate for each node k as d̂k,t = wT

k,tȳk,t,

where wk,t ∈ Rn is a vector of the regression coefficients
and ȳk,t ∈ Rn is a vector obtained by taking average of the
LSTM outputs for each column of Xk,t, i.e., known as the
mean pooling method, as described in Fig. 1.

3. ONLINE DISTRIBUTED TRAINING
In this section, we give the LSTM equations in a nonlinear
state space form. Based on this form, we first derive our train-
ing method based on the PF algorithm when we do not allow
communication between the nodes. We then introduce our
online training method based on the DPF algorithm when the
nodes share information with their neighbors.

Considering our model in Fig. 1 and the LSTM equations,
we have the following state space form for each node k

c̄k,t = Ω(c̄k,t−1,Xk,t, ȳk,t−1) (6)
ȳk,t = Θ(c̄k,t,Xk,t, ȳk,t−1) (7)
θk,t = θk,t−1 (8)

dk,t = wT
k,tȳk,t + εk,t, (9)

where Ω(·) and Θ(·) represent the nonlinear mappings per-
formed by the consecutive LSTM units and the mean pooling
operation as illustrated in Fig. 1, and θk,t ∈ Rnθ is a parame-
ter vector consisting of {wk,W
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(f)
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k }, where nθ = 4n(n+p)+5n.

Since the LSTM parameters are the states of the network to be
estimated, we also include the static equation (8) as our state.
Furthermore, εk,t represents the error in observations.

Based on the assumptions of the PF algorithm [11], we
have the following compact form for the node k

ak,t = ϕ(ak,t−1,Xk,t) + γk,t (10)

dk,t = wT
k,tȳk,t + εk,t, (11)

where γk,t and εk,t are independent state and measurement
noise samples, respectively, ϕ(·, ·) is the nonlinear mappings
in (6), (7) and (8) and ak,t , [c̄Tk,t ȳ

T
k,t θ

T
k,t]

T .

3.1. Online Training with the PF Algorithm
Here, we aim to obtain E[ak,t|dk,1:t], i.e., the optimal estimate
for the hidden state in the MSE sense. To achieve this, we first
obtain posterior distribution of the states, i.e., p(ak,t|dk,1:t).
Based on the posterior density function, we then calculate the
conditional mean estimate. In order to obtain the posterior
distribution, we apply the PF algorithm [11].

In this algorithm, we have the samples and the weights
of p(ak,t|dk,1:t), i.e., denoted as {aik,t, ωik,t}Ni=1. Based on the
samples, we obtain the posterior distribution as follows

p(ak,t|dk,1:t) ≈
N∑
i=1

ωik,tδ(ak,t − aik,t). (12)

Sampling from the desired distribution p(ak,t|dk,1:t) is in-
tractable in general so that we obtain the samples from
q(ak,t|dk,1:t), which is called as importance function [11].
To calculate the weights in (12), we use the following for-
mula

wik,t ∝
p(aik,t|dk,1:t)
q(aik,t|dk,1:t)

, where
N∑
i=1

ωik,t = 1. (13)
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We can factorize (13) such that we obtain the following recur-
sive formula [11]

ωik,t ∝
p(dk,t|aik,t)p(aik,t|aik,t−1)

q(aik,t|aik,t−1, dk,t)
ωik,t−1. (14)

In (14), we choose the importance function so that the vari-
ance of the weights is minimized. By this, we obtain particles
that have nonnegligible weights and significantly contribute
to (12) [11]. In this sense, since p(aik,t|aik,t−1) provides a
small variance for the weights [11], we choose it as our im-
portance function. With this choice, we alter (14) as follows

ωik,t ∝ p(dk,t|aik,t)ωik,t−1. (15)

By (12) and (15), we obtain the state estimate as follows

E[ak,t|dk,1:t] =

∫
ak,tp(ak,t|dk,1:t)dak,t ≈

N∑
i=1

ωik,ta
i
k,t.

Although we choose the importance function to reduce the
variance of the weights, the variance inevitably increases over
time [11]. Hence, we apply the resampling algorithm intro-
duced in [11] such that we eliminate the particles with small
weights and prevent the variance from increasing.

3.2. Online Training with the DPF Algorithm
In this subsection, we introduce our online training method
based on the DPF algorithm when the nodes share informa-
tion with their neighbors. We employ the Markov Chain Dis-
tributed Particle Filter (MCDPF) algorithm [10] to train our
distributed system. In the MCDPF algorithm, particles move
around the network according to the network topology, where
each particle can randomly move to the neighboring nodes
and update its weight while moving.

Suppose we consider our network as a graph G = (V,E),
where the vertices V represent the nodes in our network and
the edges E represent the connections between the nodes. In
addition to this, we denote the number of visits to each node
k in s steps by each particle i as M i(k, s). Here, each particle
moves to one of its neighboring nodes with a certain proba-
bility, where the movement probabilities of each node to the
other nodes are represented by the adjacency matrix, i.e., de-
noted as A. In this framework, at each visit to each node k,
each particle multiplies its weight with p(dk,t|ak,t)

2|E(G)|
sηk in

a run of s steps [10], where |E(G)| is the number of edges in
G and ηk is the degree of the node k. From (15), we have the
following update for each particle i at the node k after s steps

wik,t = wik,t−1

K∏
j=1

p(dj,t|aik,t)
2|E(G)|
sηj

Mi(j,s)
. (16)

We then calculate the posterior distribution at the node k as

p(ak,t|Ok,t) ≈
N∑
i=1

wik,tδ(ak,t − aik,t), (17)

where Ok,t represents the observations seen by the particles

Algorithm Computational Complexity
SGD O(n4 + n2p2)

EKF O(n8 + n4p4)

DPF O(N(k)(n2 + np))

Table 1: The complexities of the algorithms for each node k. Here, we omit
the derivations of the SGD and EKF based algorithms due to page limit.

at the node k until t and wik,t is obtained from (16). After we
obtain (17), we calculate our estimate for ak,t as follows

E[ak,t|Ok,t] =

∫
ak,tp(ak,t|Ok,t)dak,t ≈

N∑
i=1

ωik,ta
i
k,t. (18)

The whole procedure is illustrated in Algorithm 1, where
N(j) represents the number of particles at the node j and
Ii→j represents the indices of the particles that move from
the node i to the node j.
Theorem 1: For each node k, let ak,t be the bounded state
vector with a measurement density function that satisfies

0 < p0 ≤ p(dk,t|ak,t) ≤ ||p||∞ <∞, (19)

where p0 is a constant and ||p||∞ is the maximum value of
p(dk,t|ak,t). Then, we have the following convergence results
in the MSE sense

N∑
i=1

ωik,ta
i
k,t → E[ak,t|{dj,1:t}Kj=1] as N →∞ and k →∞.

Proof of Theorem 1. Using (19), from [10], we obtain

E
[(

E[π(at)|{dj,1:t}Kj=1]−
N∑
i=1

ωik,tπ(aik,t)
)2]

≤ ||π||2∞
(
Ct
√
U(s, υ) +

√
ςt
N

)2

, (20)

where π is a bounded function, υ is the second largest eigen-
value modulus of A, ςt and Ct are time dependent constants
and U(s, υ) is a function of s as described in [10] such that
U(s, υ) goes to zero as s goes to infinity. Since the state vec-
tor ak,t is bounded, we can choose π(ak,t) = ak,t. With this
choice, evaluating (20) as N and s go to infinity yields the
results. This concludes our proof. �

4. SIMULATIONS
We evaluate the performance of the introduced algorithms on
different benchmark real datasets. Throughout this section,
we also consider the SGD and EKF based algorithms without
communication over a network of multiple nodes as bench-
mark algorithms and denote them by “SGD” and “EKF”, re-
spectively.

We first consider the Hong Kong exchange rate dataset
[12]. For this dataset, we have the amount of Hong Kong dol-
lars that can buy one U.S. dollar on certain days. Our aim is to
estimate future exchange rate by using the values in the previ-
ous two days. In this experiment, we evaluate the convergence
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Algorithm 1 Training based on the DPF Algorithm

1: Sample {aij,t}
N(j)
i=1 from p(at|{aij,t−1}

N(j)
i=1 ), ∀j

2: Set {wij,t}
N(j)
i=1 = 1, ∀j

3: for s steps do
4: Move the particles according toA
5: for j = 1 : K do
6: {aij,t}

N(j)
i=1 ←

⋃
l∈Nj {a

i
l,t}i∈Il→j

7: {wij,t}
N(j)
i=1 ←

⋃
l∈Nj {w

i
l,t}i∈Il→j

8: {wij,t}
N(j)
i=1 ← {w

i
j,t}

N(j)
i=1 p(dj,t|{aij,t}

N(j)
i=1 )

2|E(G)|
sηj

9: end for
10: end for
11: for j=1:K do
12: Resample {aij,t, wij,t}

N(j)
i=1

13: Compute the estimate for node j using (18)
14: end for

rates of the algorithms. For this purpose, we select the pa-
rameters such that the algorithms converge to the same steady
state error level. In this setup, we choose the parameters for
each node k as follows. Since Xk,t ∈ R2 is our input, we set
the output dimension as n = 2. In addition to this, we con-
sider a network of four nodes. For the PF based algorithms,
we choose N(k) = 80 as the number of particles. Addition-
ally, we select γk,t and εk,t as zero mean Gaussian random
variables with Cov[γk,t] = 0.0004I and Var[εk,t] = 0.01, re-
spectively. For the DPF based algorithm, we choose s = 3 and
A = [0 1

2
0 1

2
; 1
2

0 1
2

0; 0 1
2

0 1
2
; 1
2

0 1
2

0]. For the EKF based
algorithm, we use the same noise statistics with the PF based
algorithm. For the SGD based algorithm, we set the learn-
ing rate as µ = 0.1. In Fig. 2, we illustrate the predic-
tion performances. Due to the nonlinearity of our model,
the EKF based algorithm has slower convergence compared
to the other algorithms. Moreover, due to only exploiting
the first order gradient information, the SGD based algorithm
has also slower convergence compared to the PF based al-
gorithms. Unlike the SGD and EKF based methods, the PF
based algorithms have a high performance gradient free den-
sity estimation technique, hence, they converge much faster
to the final MSE level. Overall, due to its distributed structure
the DPF based algorithm has the fastest convergence rate.

We then consider the sentence dataset [13], where we have
the vector representation of each word in a sentence. In this
experiment, we evaluate the steady state error performance of
the algorithms. Thus, we choose the parameters such that the
convergence rate of the algorithms are similar. In this case, we
have a variable length input regressor Xk,t ∈ R2×mt , where
mt represents the number of words in a sentence. For the
other parameters, we use the same setting with the previous
case except N(k) = 50, Cov[γk,t] = (0.025)2I and µ = 0.055.
In Fig. 3, we illustrate the label prediction performances.
Again due to the highly nonlinear structure of our model,
the EKF based algorithm has the highest steady state error
value. Additionally, the SGD based algorithm also has a high
final MSE value compared to the other algorithms. Again,
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Fig. 2: Error performances over the Hong Kong exchange rate dataset.
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Fig. 3: Error performances over the sentence dataset.

the PF based methods achieve lower final MSE value among
all the algorithms. However, since the DPF based method
effectively shares information among neighboring nodes, it
achieves smallest steady state error value.

5. CONCLUDING REMARKS
We study online training of the LSTM architecture in a net-
work of nodes for regression and introduce online distributed
training algorithms for variable length data sequences. We
first propose an LSTM based model for variable length data
inputs. To train this model, we put the model equations in a
nonlinear state space form. We then introduce a distributed
particle filtering based online training algorithm. Thus, we
obtain an effective training algorithm for our LSTM based
model. Our algorithm guarantees convergence to the optimal
parameter estimation in the MSE sense. We achieve this per-
formance with communication and computational complexity
in the order of the first order methods [3]. In our simulations,
we illustrate significant performance improvements with re-
spect to the conventional methods [14, 15].
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