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ABSTRACT
With the ever growing popularity of deep learning, the
tremendous complexity of deep neural networks is becom-
ing problematic when one considers inference on resource
constrained platforms. Binary networks have emerged as a
potential solution, however, they exhibit a fundamental limi-
tation in realizing gradient-based learning as their activations
are non-differentiable. Current work has so far relied on ap-
proximating gradients in order to use the back-propagation
algorithm via the straight through estimator (STE). Such
approximations harm the quality of the training procedure
causing a noticeable gap in accuracy between binary neural
networks and their full precision baselines. We present a
novel method to train binary activated neural networks using
true gradient-based learning. Our idea is motivated by the
similarities between clipping and binary activation functions.
We show that our method has minimal accuracy degradation
with respect to the full precision baseline. Finally, we test our
method on three benchmarking datasets: MNIST, CIFAR-10,
and SVHN. For each benchmark, we show that continuous
binarization using true gradient-based learning achieves an
accuracy within 1.5% of the floating-point baseline, as com-
pared to accuracy drops as high as 6% when training the same
binary activated network using the STE.

Index Terms— deep learning, binary neural networks,
activation functions

1. INTRODUCTION

Deep neural networks are becoming the de facto predictive
models used in many machine learning tasks. Their popu-
larity is the result of numerous victories deep learning has
enjoyed in the past decade. Most notably, with AlexNet [1]
winning the 2012 ImageNet Large Scale Visual Recognition
challenge, extensive research efforts in the area followed and
culminated with machines outperforming humans in recog-
nition tasks [2]. However, this outstanding representational
power comes at the price of very high complexity. Some of
these networks require around 1 billion multiply-accumulates
(MACs) [3]. It is in fact not uncommon to find networks

This work was supported in part by Systems On Nanoscale Informa-
tion fabriCs (SONIC), one of the six SRC STARnet Centers, sponsored by
MARCO and DARPA.

This work is supported in part by IBM-ILLINOIS Center for Cognitive
Computing Systems Research (C3SR) - a research collaboration as part of
the IBM AI Horizons Network.
‡ Zhuo Wang is now an employee at Google.

with over 100 million parameters [4] and over 1000 layers [5].
Such high complexity makes these models hard to train, but
most importantly, their deployment on resource-constrained
platforms, such as ASICs, FPGAs, and microcontrollers, be-
comes problematic.

1.1. Related work
The importance of reducing the complexity of deep learning
systems is well appreciated today. One approach is to opti-
mize the structure of a neural network itself, such as by prun-
ing [6], where weak connections are deleted and the reduced
network is retrained. Dominant layers can also be decom-
posed into a cascade of smaller layers with an overall lesser
complexity [7]. Taking advantage of the sparsity also enables
efficient implementation via zero-skipping [3].

An orthogonal approach is to consider reduced precision
neural networks. This can be done in one of two ways: quan-
tizing pre-trained networks, or directly training in low preci-
sion. The first option is justified by the inherent robustness of
neural networks suggesting that moderate quantization should
not be catastrophic. This has led to interesting analytical in-
vestigations such as determining the correspondence between
precision and signal-to-quantization-noise ratio [8]. A bet-
ter understanding of accuracy in the presence of fixed-point
quantization was presented in [9]. This study led to the dis-
covery of an interesting trade-off between weight and activa-
tion precisions.

Directly training in low precision has also seen many ad-
vances. It was shown that training 16-bit fixed-point networks
is possible using stochastic rounding [10]. It was later re-
alized that training binary weighted neural networks, such
as BinaryConnect [11], is possible provided a high precision
representation of the weights is maintained during the training
[12]. A natural extension is to consider activation binarization
such as BinaryNet [13], XNOR-Net [14], and DoReFa-Net
[15]. A close investigation of these works’ reported perfor-
mances reveals failure in achieving state-of-the-art accuracy.
For instance, the accuracy gap between BinaryNet and Bi-
naryConnect is slightly over 3% (on the CIFAR-10) dataset,
despite using numerous optimization tricks such as stochastic
rounding, shift-based ADAMAX, and early model selection.
These shortcomings may arguably be attributed to the inabil-
ity to use gradient-based learning because of the use of the
non-differentiable binary activation function. Instead, these
works have relied on gradient approximations via the straight
through estimator (STE) [16] to enable back-propagation.
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Fig. 1: A feedforward binary activation function (BAF) and its
straight through estimator (STE). Conventional training of binary ac-
tivated neural networks uses the non-differentiable binary activation
during the feedforward computations but replaces it with the identity
during back-propagation.

The STE estimates the gradient of the binary activation
function by replacing it with the identity function as shown
in Fig. 1. Effectively, the back-propagation procedure “sees
through” the binary activation function. The STE is justified
in the context of stochastic gradient descent (SGD) because
the computed gradient is an approximation to the true gradient
with respect to the loss function being minimized. However,
in the case of SGD, almost half a century of research has led to
a well-established theory with performance guarantees [17].
In contrast, the STE method still lacks a complete analytical
basis.
1.2. Contributions
We propose a new method to train binary activated net-
works. Instead of relying on gradient approximation, our
method leverages the true SGD algorithm. We analytically
demonstrate that our method guarantees minimal accuracy
degradation with respect to the full precision baseline. We
present numerical experiments that show successful training
of binary activated networks on the MNIST [18], CIFAR-10
[19], and SVHN [20] datasets with accuracies within 1.5%
with respect to the full precision baseline. We also train the
same binary activated networks using the STE and observe
accuracy drops as high as 6% justifying the superiority of our
proposed method. Thus, the complexity benefits of binary ac-
tivated networks are presented with minimal loss in accuracy
over full precision networks.

The rest of this paper is organized as follows. Section 2
describes our proposed continuous binarization method and
includes our analytical justification. Numerical results are re-
ported in Section 3. We conclude our paper in Section 4.

2. PROPOSED METHOD: CONTINUOUS
BINARIZATION

This section describes our proposed continuous binarization
technique and its analytical justification.

2.1. Principle
Our main motivation is to employ true gradient-based learn-
ing for binary activated networks. Consequently, the use of

 

 
  

 

Fig. 2: A scaled binary activation function (SBAF) and some
parametrized clipping functions (PCFs). The SBAF considered is
σ(x) = 2 × 1x>0. The PCF is σ(x) = clip( x

m
+ 1, 0, 2). With

smaller value of m, the PCF approaches the SBAF.

the STE is not suitable. Instead, we replace the binary activa-
tion by a continuous, piecewise differentiable function. More
specifically, we consider a scaled binary activation function
(SBAF) of the form

σ(x) = α× 1x>0

where α is a scale parameter and 1 is the indicator function.
We also consider a parametrized clipping function (PCF) of
the form

σ(x) = clip(
x

m
+
α

2
, 0, α) = min(max(

x

m
+
α

2
, 0), α)

(1)

where m and α are the slope and scale parameters, respec-
tively. Observe that, for a small value of m, the PCF has a
steeper slope and approaches the SBAF as shown in Fig. 2
for α = 2. This observation is the key insight our method
relies on. We propose to train a neural network using the PCF
as the activation function and learn its parameter m while
constraining it to be small. This is done by regularizing m
using the L2 or L1 regularization schemes. When m is small
enough, we replace the PCF by the SBAF to obtain the fi-
nal binary activated network. Thus, our procedure uses SGD
during training, but generates a binary activated network for
inference.

2.2. Procedure
The proposed continuous binarization procedure is provided
in Algorithm 1. An important caveat is that training the slope
parameters of all layers simultaneously might lead to a bottle-
neck effect in the backward pass. This is because the gradients
flowing through the PCF become sparse as the slope becomes
steep, causing convergence to slow down or even stop. Hence,
we learn the slope parameter m in stages, one layer at a time,
where at stage l, all layers up to layer l − 1 are binary acti-
vated and have frozen weights and only the slope parameter
m at layer l is learned.

As the parameter m needs to be regularized, e.g. via L1

or L2 regularizations, the usual caveats apply to the choice
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Algorithm 1 Continuous Binarization procedure: L is the number
of layers, I(l) is the number of iterations for which the PCF parame-
ters of layer l are trained, µ is the learning rate, and λ(l) is the slope
regularization coefficient at layer l

for l = 1 to L do
for i = 1 to I(l) do

(inputs, labels)← getMiniBatch()
hidden← inputs

. Feedforward pass:
for l = 1 to L do

W ← getLayerWeights(j)
preActivation← computePreActivation(hidden, W , l)
if j < l then

hidden← SBAF(preActivation, l)
end if
if l ≤ j < L then

hidden← PCF(preActivation, j)
end if
if j == L then

hidden← outputActivation(preActivation)
. Generally a softmax

end if
end for
predicted← argmax(hidden)
C ← costFunction(predicted, labels)

. Generally a cross entropy
. Backward pass and updates:

for j = l to L do
W ← getLayerWeights(j)
G← computeGradients(C, W )
W ←W − µG

end for
m← getPCFSlope(l)
α← getPCFScale(l)
gm← computeGradient(C + regularizer(m, λ(l)), m)
gα← computeGradient(C, α)
m←m− µgm
α← α− µgα

end for
end for

of the regularization coefficient λ. We identify three types
of regularization in a network: 1) activations preceding fully
connected layers: λ1, 2) activations preceding convolutional
layers: λ2, and 3) activations preceding pooling layers: λ3. A
good strategy is to choose λ1 < λ2 < λ3.

2.3. Analytical Justification
Given a network, let us denote by N (l) the obtained network
using the SBAF for all layers until and including the l-th one
and the PCF for all final layers past the l-th one. Conse-
quently, N (0) is the original full precision network using the
PCF at all layers and N (L−1) is the final binary activated net-
work. Note that at the start of stage l (l ≥ 2) of the continuous
binarization procedure, we replace N (l−1) by N (l) after hav-
ing regularized the parameter m at layer l.

We first show that the mean squared error (MSE) of ap-

proximating the PCF by the SBAF decreases linearly in m.
Note that from (1), the intercepts with the lines y = 0 and
y = α of the clipping function are at x = −mα2 and x = mα

2 ,
respectively. We assume the pessimistic scenario where the
input x is uniformly distributed in

[
−mα2 ; mα2

]
. Then, the

MSE between PCF and SBAF activations is computed as fol-
lows:

MSE = k

∫ −mα2
−mα2

( x
m

+
α

2
− α · 1x>0

)2
dx = c ·m

where k is a normalization constant and c = kα
3

12 is a con-
stant. Hence, we establish that as m decreases, the perturba-
tions due to switching activation functions at layer l decrease
linearly in the mean squared sense.

Next, for a given input, let ao and ap be the feature vectors
at layer l of N (l−1) and N (l), respectively. We will show that
there is no mismatch between the predicted labels ŷo and ŷp
of N (l−1) and N (l), respectively, provided the perturbation
vector at layer l, qa = ap − ao, has a bounded magnitude.
To do so, we use the output re-ordering argument similar to
that in [9]. There is a mismatch when ŷo = i, ŷp = j, and
i 6= j, where i, j are predicted classes. But this event occurs
only if fi(ao) > fj(ao) and fi(ap) < fj(ap) where fi, fj
are the soft outputs at indexes i, j, respectively. For small
perturbations, we can use a first order Taylor approximation
as in [9] to show:
fi(ap) < fj(ap)⇒ fi(ao + qa) < fj(ao + qa)

⇒ fi(ao)− fj(ao) < ‖qa‖ ‖∇aofj(ao)−∇aofi(ao)‖

where we used the Cauchy-Schwarz inequality. Therefore, by
the contrapositive, we have no mismatch if

‖qa‖ <
fi(ao)− fj(ao)

‖∇aofj(ao)−∇aofi(ao)‖
(2)

For an M -class classification problem, we may extend the
condition in (2) as follows:

‖qa‖ < min
j=1...M, j 6=i

fi(ao)− fj(ao)
‖∇aofj(ao)−∇aofi(ao)‖

Thus, we establish an upper bound on the perturbation vector
magnitude to avoid mismatch. But this magnitude decreases
linearly as a function of m in the mean square sense. Hence,
we argue that replacing the PCF by the SBAF at layer l has
minimal effect on accuracy for small enough values of m.

3. NUMERICAL RESULTS

In order to evaluate our proposed continuous binarization
method, we utilize three datasets: MNIST [18], CIFAR-10
[19], and SVHN [20]. For each, we consider a unique net-
work inspired by BinaryNet [13], defined below:
• MNIST: A multi-layer perceptron with architecture
784− 2048− 2048− 2048− 10.
• CIFAR-10: A convolutional neural network with archi-

tecture 128C3− 128C3−MP2− 256C3− 256C3−
MP2− 512C3− 512C3− 1024FC − 1024FC − 10.
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Fig. 3: Illustration of the continuous binarization procedure for: (a) MNIST, (b) CIFAR-10, and (c) SVHN. Both blue and orange curves are
for the same network. The blue curve is obtained by observing the test error forN (l). The orange curve is obtained by observing the test error
for N (L−1).

MNIST CIFAR-10 SVHN
Full-precision Baseline 1.45% 9.04% 2.53%
Binarization via STE 1.54% 14.80% 4.05%

Continuous Binarization 1.27% 10.41% 3.20%

Table 1: Summary of Test Errors for the three networks trained for
each dataset. Note the small gap in accuracy between baseline and
binary activated networks for each dataset when using the proposed
continuous binarization method. In contrast, binarization using the
STE is not as successful.

• SVHN: A convolutional neural network with architec-
ture 64C3−64C3−MP2−128C3−128C3−MP2−
256C3− 256C3− 1024FC − 1024FC − 10.

The network corresponding to each dataset is trained in three
ways: 1) full-precision baseline using the clipping activation
function, 2) binarization via STE [16], and 3) using the pro-
posed conitnuous binarization. All results are summarized in
Table 1.

Figure 3 illustrates the outcome of the continuous bina-
rization procedure for each datasets. Plotted is the test error
as a function of training epoch forN (l) andN (L−1). The net-
works are pre-trained with m = 0.5 and α = 2 for all layers
which is why the test error for N (l) has good initial condi-
tions. Recall that N (l) uses the SBAF for all layers up to the
l-th one and the PCF for all other layers, whereasN (L−1) uses
only the SBAF. As l is progressively incremented in stages,
the number of binary activated layers in N (l) is also incre-
mented until all the network is binary activated and N (l) is
identical to N (L−1), making both curves meet.

For the MNIST dataset, the full precision baseline is ob-
tained using SGD and achieves 1.45% test error after 500
epochs. The STE implementation is obtained by training with
Vanilla Adam [21] (we observed significant improvements
over SGD). All network configurations are otherwise iden-
tical to the baseline. The test error obtained is 1.54% after
500 epochs. For continuous binarization, only L2 regulariza-
tion was used on m with λ = 1 for all layers. The first layer
is trained for 200 epochs, and all other layers are trained for
100 epochs each. The test error at the end of the last training
epoch we obtain is 1.27%.

For the CIFAR-10 dataset, the baseline network is trained
using SGD and achieves a test error of 9.04% using clip-
ping after 500 epochs. The STE implementation is trained
using Vanilla Adam and with the same configurations as the
baseline otherwise. The test error obtained is 14.80% after
500 epochs. During continuous binarization, Vanilla Adam is
used instead of SGD. This slightly negated the warm up ef-
fect due to the change in optimization technique. both L2 and
L1 regularizations were used with coefficients λ1 = 0.001,
λ2 = 0.01, λ3 = 0.1. Each layer is trained for 50 epochs and
the final test error obtained is 10.41%.

For the SVHN dataset, the baseline network is trained us-
ing SGD and achieves a test error of 2.53% using clipping
after 200 epochs. The STE implementation is trained using
Vanilla Adam and with the same configurations as our base-
line otherwise. The test error obtained is 4.05% after 200
epochs. During continuous binarization, the same procedure
as that for CIFAR-10 is followed with a few modifications:
each layer is trained for 20 epochs instead of 50 because this
dataset is much larger; and only L2 regularization is used for
all layers past the fifth one. We obtain a final test error of
3.20%.

In summary, for each of the three datasets, the test error
using continuous binarization is within 1.5% of the full pre-
cision baseline. However, for binarization using the STE, the
accuracy drop reaches up to 6%. This demonstrates the supe-
riority of our proposed training procedure for binary activated
networks.

4. CONCLUSION
We have presented a novel method for binarizing the activa-
tions of deep neural networks. We have presented a theoret-
ical justification for our method. To demonstrate the valid-
ity of our approach, we have tested it on three deep learning
benchmarks.

Future work includes further experimentations on larger
models and datasets, combining the proposed activation bina-
rization to weight binarization, and extension to the multi-bit
activation.
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