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ABSTRACT
In this paper, we present the boundary objectness network
(BON), an effective convolutional neural network (CNN) for
object detection. Its core contribution is to accurately localize
the objects. Generally, the CNN-based localizers predict four
bounding box coordinates by learning a regression function.
This method shows a low Intersection-of-Union (IoU) with
the ground truth box. In our work, the localization is formu-
lated as a probabilistic problem. Specifically, the deep fea-
tures inside the candidate proposal are mapped into a row and
a column feature vector, which are called boundary object-
ness. The boundary objectness indicates the existence of an
object in the horizontal and vertical direction of the proposal,
enabling us to elaborately localize the object. Moreover, the
modules of object detection share the common convolution-
al layers. Meanwhile, a multi-task loss function is designed
for joint training strategy. Experimental results on the PAS-
CAL VOC datasets demonstrate the competitive performance
of our method. For the VGG16 model, we achieve 77.6 %
mAP at a speed of 4 frame per second (FPS), thus having the
potential for real-time processing.

Index Terms— convolutional neural network, object de-
tection, localization, boundary objectness.

1. INTRODUCTION

Object detection is a computer vision task that has attracted
an immense amount of attention over the last years. Com-
pared with the recognition task, object detection requires not
only accurate classification but also precise localization. Effi-
ciency is another important key to determine the performance
of object detection, making it practicable in real-time appli-
cations.

Over the past decade, the dominant approach to localizing
the objects is the sliding window paradigm, based on HOG
templates and SVM classifiers [1] [2]. However, sliding win-
dows makes an exhaustive search, which is computational-
ly infeasible. Several works attempt to use segmentation for
localization [3] [4]. These methods generate a set of fore-
ground/background segmentations, learn to predict the like-
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Fig. 1. The comparison of previous CNN-based object detectors
and ours.
lihood that a foreground segment is a complete object, and
use this to rank the segmentations. However, these methods
are time-consuming. EdgeBoxes [5], simply measuring the
number of edges, provides the tradeoff between localization
accuracy and efficiency, which is desired in real-time applica-
tions.

Important progress for improving both the accuracy and
efficiency of object detectors has remarkably advanced with
convolutional neural networks (CNNs) [6]. The region-based
CNN (R-CNN) [7] and Fast R-CNN [8] are two representative
works. They extract candidate proposals through selective
search [9] and then apply CNNs to classify these proposal-
s. However, the classification module using CNNs generally
takes advantages of GPU, while the localization module is im-
plemented on the CPU. The separate modules make the pro-
cess inefficiency. To address this problem, Faster-RCNN [10]
constructs a region proposal network (RPN) on top of the last
convolutional layer of Fast-RCNN, outputing an objectness
score and k regressed proposals defined by four coordinates.
RPN shares the convolutional layers with Fast R-CNN, thus
enabling high-efficiency. However, Faster-RCNN struggles
with unsatisfactory mAP (mean Average Precision) with high
IoU (Intersection-of-Union) thresholds. To solve this prob-
lem, some literature hypothesizes that it is attributed to the
coarseness of single deep layer features. Therefore, SSD [11]
aims to detect objects on multiple layers of CNN. Hyper-
Net [12] combines deep and coarse information with shallow
and fine information into a feature cube. Both two methods
are able to improve the performance of RCNN.

In addition to the insufficient features, we consider the lo-
calization method as another primary cause. The above CNN-
based object detectors apply the bounding box regression for
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localization. However, this regression method often shows a
deviation to the ground truth bounding box, further leading to
the failure of classifier, as shown in Fig.1. In our work, we
localize the objects by enlarging the candidate proposal, mea-
suring the feature vectors produced from CNN and refining
the object location.

Our main contributions are summarized as follows:
(1) We propose a category-agnostic localizer based on the

recent advance LocNet [13], which follows a general objec-
t detector to refine the category-specific proposals at post-
processing stage.

(2) We develop a complete object detection framework,
called boundary objectness network (BON), in which all the
modules share the convolutional layers.

(3) We introduce a multi-task loss function, which allows
for an end-to-end joint training strategy.

2. BOUNDARY OBJECTNESS NETWORK

As illustrated in Fig.2, the framework of our object detec-
tor includes four main modules, i.e., the modules of basenet,
proposal generation, localization and classification. In the
basenet module, we forward the image through a sequence of
convolutional layers to extract feature maps of the entire im-
age. In the proposal generation module, we produce a series
of objectness [14] maps to give a search guide for candidate
proposals. In the localization module, we infer the bound-
ing box of an object by measuring the boundary objectness of
candidate proposals. In the classification module, we predict
the category for each box. In the following, we introduce each
module in detail.

2.1. Basenet module

VGG-16 [15] is used as the basenet, which is pre-trained
on ImageNet [16] dataset. Compared with methods using a
single layer for recognition or detection, many works have
demonstrated that utilizing multi-level features in CNNs
through skip-connnections is beneficial to promoting infor-
mation complementary and localizing all scales of object-
s [12] [17] [18]. Therefore, we combine the multiple feature
maps of different resolutions into a single feature cube, as
shown in Fig.2, which is called fused feature maps. In or-
der to match dimensions, we use convolutional kernels with
different strides (4, 2 and 1) to convolve with the output of
three feature maps, respectively. More details are shown in
the right table of Fig.2.

2.2. Proposal generation module

In the proposal generation module, the fused feature maps are
as input and a bank of objectness maps are output. Each ele-
ment on the objectness map corresponds to a specific region
in the image. For each region, we predefine K anchors with
different sizes and aspect ratios. For each objectness map, it
predicts one kind anchor, and thus there are in total K object-
ness maps. (In the experiments, K = 9 is used the same as

as [10], i.e., 3 sizes and 3 aspect ratios.) Note that the an-
chors with larger size have a large reception field, and thus
the different kernel sizes (1 × 1, 3 × 3 and 5 × 5) are ap-
plied for the anchors with different sizes, which are shown
in the right table of Fig.2. After each proposal is scored by
objectness, non-maximum suppression (NMS) is adopted to
remove highly-overlapped proposals. Then, the top-R ranked
proposals are selected.

2.3. Localization module

Given a candidate proposal, we enlarge it by a factor γ. Each
boundary of the enlarged proposal is divided into V equal in-
tervals, each of which is assigned two boundary objectness,
i.e., in-out and border objectness. If the interval is incorpo-
rated in the ground truth bounding box, then the in-out ob-
jectness is assigned as 1, and otherwise 0. If the interval is
aligned with the boundary of the ground truth bounding box,
then the border objectness is assigned as 1, and otherwise 0.

Assuming that the ground truth bounding box is represent-
ed as (x1, y1, x2, y2), where (x1, y1) and (x2, y2) denote the
coordinates of top-left and bottom-right, respectively. Then
the formulation of target boundary objectness in the x-axis
can be written as:

Iv =

{
1 if x1 ≤ L(v) ≤ x2
0 otherwise ,

Bv =

{
1 if L(v) = x1 or x2
0 otherwise ,

(1)

where v ∈ {1, ..., V }, and L(v) denotes the v-th interval co-
ordinate of the enlarged proposal on the x-axis boundary; Iv
and Bv denote the in-out and border objectness of the v-th
interval, respectively. The target boundary objectness in the
y-axis is the same as that in the x-axis. Note that V decides
the elaboration extent of boundary objectness, and thus it has
a significant impact on the detection performance of small ob-
ject, as validated in Sec. 4.

In order to learn the boundary objectness, the localiza-
tion module branches into two streams, X and Y , each re-
sponsible for yielding an axis-boundary objectness. Firstly,
the feature maps of the enlarged proposal are extracted from
the fused feature maps by the ROI pooling layer [8]. After
a convolutional layer, we obtain the feature maps F of a size
16×16×512 , as the input of the localization module. Then,
the max pooling layer is applied in F along with the x-axis
and y-axis. Consequently, feature maps Fx and Fy are pro-
duced, which can be formulated as:

FX(i, l) = max
j
F (i, j, l), FY (j, l) = max

i
F (i, j, l), (2)

where F (i, j, l) denote the element located at (i, j) in the l-th
channel of F . Then, FX and FY are fed into a 1 × 1 con-
volutional layer followed by a global average pooling layer.
Finally, the two branches are concatenated, and then a sig-
moid layer outputs the x-axis and y-axis boundary objectness
together.
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Layer name Ker. Size

Conv1_x [3×3×64]×2

Conv2_x [3×3×128]×2

Conv3_x [3×3×256]×2

Conv4_x [3×3×512]×2

Conv5_x [3×3×512]×2

Conv6_1 6×6×256

Conv6_2 4×4×256

Conv6_3 1×1×256

Conv7_1 1×1×256

Conv7_2 3×3×256

Conv7_3 5×5×256

Conv8_x [1×1×128]×3

Conv9_x [3×3×3]×3

Conv10 3×3×512

Conv11_x [1×1×196]×2

Conv12 1×1×4096

Conv13 1×1×21

Pool1 2×2

Pool2 2×2

Pool3 2×2

Pool4 2×2
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Pool7 16×16
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Fig. 2. The framework of BON for object detection. Left: BON overview. Right: Kernel sizes used in BON.

2.4. Classification module

In general, the object detection methods have two sibling out-
put layers for each proposal, i.e., bounding box offsets and
(C + 1) scores (C object classes plus 1 for background). In
other words, localization and classification are simultaneous-
ly implemented. We argue that the two modules should be
cascaded, it is because inaccurate localization may make a
shift of feature extraction, leading to the failure of classifica-
tion. As shown in Fig.1, the candidate proposal covers part of
a person and a horse. The previous CNN-based methods di-
rectly predict its category, which may lead to the high scores
of both categories. In contrast, we firstly refine the location
of one object (person), and then the classification module can
give a high confidence to it. For this reason, we classify each
object after the accurate localization, rather than simultane-
ously outputing the bounding box and category scores.

3. OPTIMIZATION

As Fig. 2 shows, BON has three output branches of proposal
generation, localization and classification, for each of which
we define a loss function.

The first task loss Lobj is log loss over binary classes (u =
1 indicates there exists an object, and otherwise no object),
which is defined as:

Lobj(p
obj , u) = − log pobju , (3)

where pobju denotes the objectness score for the class u.
Recall that each boundary of a proposal is divided into V

equal intervals, Iv and Bv are the target boundary objectness
of the v-th interval, defined in (1). Assuming that pIv and
pBv are the predicted in-out and border boundary objectness,
respectively, then the second task loss Lloc can be written as:

Lloc(p
I , pB , I, B) = −

V∑
v=1

(Iv log p
I
v + (1− Iv) log(1− pIv)

+ρ+Bv log p
B
v + ρ−(1−Bv) log(1− pBv )).

(4)

The former two terms in (4) formulate the loss of the in-out
case, while the latter two terms are of the border case. The
same as LocNet, we set ρ− = 0.5 · V

V−1 and ρ+ = (V −1)ρ−

to balance the border and non-border element.
The third task loss Lcls is computed by a softmax over

(C + 1) outputs for each ROI, which is expressed as:
Lcls(p

cls, c) = −logpclsc , (5)

where c ∈ (1, .., C + 1) denotes the object class, and pclsc

represents the confidence for the class c.
Combining (3), (4) and (5), we introduce a multi-task loss

function to jointly train for these three branches:

L =
α

Nobj
Lobj(p

obj , u)+
β

Nloc
Lloc(p

I , pB , I, B)+
1

Ncls
Lcls(p

cls, c).

(6)
The hyper-parameters α and β in (6) control the balance be-
tween three task losses. Besides, each loss term is normalized
by the corresponding batch size, i.e., Nobj , Nloc and Ncls for
the proposal generation, localization and classification task,
respectively.

4. EXPERIMENTS

In the experiments, all methods are trained on the union set of
PASCAL VOC2007 trainval [19] and VOC2012 trainval and
tested on VOC2007 test set (4952 images with 20 categories).
In the training stage, we use the proposals generated by se-
lective search [9] to simultaneously train three tasks of BON,
which allows for an end-to-end joint training strategy. We set
the initial learning rate to 10−3, weight decay to 0.0005 and
momentum to 0.9. Moreover, we set α = 20 and β = 10,
which are defined in (6). Note that all the hyper-parameters
are tuned over the validation. Our implementation uses a sin-
gle Nvidia Titan GPU on Caffe [20].

4.1. Evaluation on localization Performance
Here we evaluate the localization performance of BON. Fol-
lowing [10] [12] [13], we provide the recall as a function of
the IoU thresholds for the proposals. We compare BON-V28
(V =28) and BON-V36 (V =36) with EdgeBoxes, RPN and
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Table 1. Comparison of object detection performance.
Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Fast R-CNN 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.7 69.9 31.8 70.1 74.8 80.4 70.4
Faster R-CNN 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
HyperNet 76.3 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5
SSD 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
BON-V28 77.0 78.2 83.3 76.9 72.4 61.2 86.0 85.8 88.0 59.3 84.4 71.1 85.7 85.9 81.0 78.4 49.6 78.1 74.2 83.6 76.9
BON-V36 77.6 79.8 84.9 78.2 73.9 62.5 86.9 86.6 88.9 59.1 83.4 71.9 85.8 85.5 81.9 78.3 51.8 78.5 74.8 82.6 76.3

Fig. 3. Recall versus IoU thresholds. Left: top-50 proposals.
Right: top-300 proposals.

LocNet1. Then top-50 and top-300 ranked proposals are re-
spectively used based on the confidence generated by these
methods.

As Fig.3 shows, both our method and LocNet get good re-
sults across a variety of IoU thresholds, which is desirable in
practice and plays an important role in object detection. Note
that with 50 proposals, BON-V28 performs a little worse than
LocNet, we consider this is because LocNet uses a category-
specific localizer, while BON works in an category-agnostic
way. However, by increasing V to 36, we observe that BON-
V36 surpasses LocNet. As we have mentioned before, the
parameter V has a significant impact on the localization per-
formance. Larger V divides the boundary into more elaborate
intervals, objects especially with small size are more likely to
be detected. Nevertheless, when V continues to increase, the
performance is nearly saturated. Another observation is that
with more proposals, the gap between LocNet and our method
is smaller, and V is not the most decisive factor. In Fig.4, we
show some localization examples with BON.

4.2. Evaluation on detection performance
We also compare BON to Fast R-CNN, Faster R-CNN, Hy-
perNet and SSD for generic object detection. The perfor-
mance is measured by mean average precision (mAP) over
IoU = 0.5. As shown in Tab.1, BON-V28 is already better
than any other method. Furthermore, BON-V36 gets mAP of
77.6 %, 1.3% higher than HyperNet and 0.8% higher than SS-
D, outperforming Fast R-CNN and Faster R-CNN by a large
margin of 7.0% and 4.4%, respectively. Moreover, BON-V36
gets a large improvement in detecting the small objects (e.g.,
bottle and plant) compared to BON-V28, which could be at-
tributed to the elaborate divide of the boundary. In Fig.4, we
show some detection examples with BON.

1LocNet is not used independently, which generally follows an object
detector. The same as [13], we use LocNet with V = 28 after Fast R-CNN
in the experiments.
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Fig. 4. Left&middle: localization examples with BON. Right:
detection examples with BON.

4.3. Evaluation on accuracy and efficiency

Table 2. Comparison of detection accuracy and running time.
Methods mAP time(msec)
IoU 0.5 0.65 0.8 -
Fast R-CNN 74.6 58.7 33.3 1830
Faster R-CNN 73.2 59.9 31.5 198
LocNet 77.5 64.8 41.6 2031
BON-V28 77.0 63.2 39.8 227
BON-V36 77.6 66.3 43.8 239

We examine both the accuracy and efficiency, respectively
measured by mAP over IoU = 0.5, 0.65, 0.8 and runtime. We
compare BON-V28 and BON-V36 to Fast R-CNN, Faster R-
CNN and LocNet. The result in Tab.2 shows that both LocNet
and our method yield much better mAP results over each IoU,
this is due to the superior localization performance. Com-
pared to Fast R-CNN, BON-28 outperforms it both in mAP
and runtime. Compared to Faster R-CNN, BON-V28 takes a
bit more time, but outperforms a lot in accuracy. Compared
to LocNet, BON-28 achieves a little worse mAP, but shows
an absolute advantage in speed. Moreover, BON-V36, taking
more 12 msec than BON-28, is more accurate and faster than
LocNet.

5. CONCLUSION

We have presented BON, a fully trainable deep neural net-
work for objection detection. In contrast to the previous ob-
ject detection methods, which apply the bounding box regres-
sor to localize the objects, we develop a powerful category-
agnostic localizer based on the recently introduced LocNet
model. Moreover, the multi-task loss function allows for an
end-to-end joint training strategy, and the sharing of the con-
volutional layers enables efficient detection at inference time.
Extensive experiments on the PASCAL VOC datasets demon-
strate that our method achieves a remarkable improvement on
localization performance, detection accuracy and runtime.
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