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ABSTRACT

Methods based on independent component analysis (ICA) and
canonical correlation analysis (CCA) as well as their various ex-
tensions have become popular for the fusion of multimodal data as
they minimize assumptions about the relationships among multiple
datasets. Two important extensions that are widely used, joint ICA
(jICA) and parallel ICA (pICA), make a number of simplifying as-
sumptions that might limit their usefulness such as identical mixing
matrices for jICA, and the requirement for the same number of com-
ponents for jICA and pICA. In this paper, we propose a new, flexible
hybrid method for fusion based on ICA and CCA, called consecutive
independence and correlation transform (C-ICT), which relaxes the
main limitations of jICA and pICA. We demonstrate performance
advantages of C-ICT both through simulations and application to
real medical data collected from schizophrenia patients and healthy
controls performing an auditory oddball task (AOD).

Index Terms— Data Fusion, EEG, FMRI, Independent Compo-
nent Analysis, Canonical Correlation Analysis

1. INTRODUCTION

In fusion studies, the collection of data from different sensors or
modalities is becoming increasingly popular, since each modality is
expected to provide unique, yet complementary, information about
the system of interest, such as the brain [1, 2, 3]. Maximizing the
utilization of the joint information available in data from different
modalities is the fundamental motivation for performing a joint anal-
ysis on multimodal data [4, 5, 6]. Since the relationship among
modalities are not well understood, it is important to reduce the as-
sumptions placed on the data. This has led to the use of data-driven
blind source separation (BSS) techniques for the analysis of mul-
timodal data, especially those based upon independent component
analysis (ICA) [1], canonical correlation analysis (CCA) [7] and
its extension multiset CCA (M-CCA) [8, 9]. Though, CCA-based
methods are popular in fusion studies and successfully implemented
for many applications [10], they only exploit second-order statis-
tics (SOS) to enable fusion, as opposed to ICA that can take all or-
der statistical information into account. Furthermore, ICA provides
independent components—sources—that enable easy interpretation,
critical in real-world applications. This has been one of the reasons
for the popularity of ICA-based techniques for fusion of medical
imaging data [11, 12, 13].

Since ICA formulation is originally for a single dataset, several
extensions have been proposed to enable fusion of multiple datasets.

This work was supported in part by NSF-CCF 1618551 and NIH-NIBIB
R01 EB 005846.

By concatenating each dataset together and applying a single ICA
on the ’joint’ dataset with more samples, joint ICA (jICA) has found
wide application in the fusion of medical imaging data such as elec-
troencephalogram (EEG), functional magnetic resonance imaging
(fMRI) and structural MRI (sMRI) [1, 14, 15]. However, jICA as-
sumes a common mixing matrix for all the modalities [16], which is
a strong constraint. Additionally, jICA assumes that a single prob-
ability density function can describe the distributions of the latent
sources from multiple modalities at the same time, again another
strong assumption that limits its adaptability to many real-world ap-
plications. Another important extension of ICA, parallel ICA (pICA)
[11, 17], consists of the application of separate ICAs on each dataset,
while maximizing correlation of subject profiles, i.e., columns of
mixing matrix at each iteration, thus, alleviating the constraint in
jICA of a single mixing matrix for all modalities. However, the per-
formance of pICA suffers when the number of subjects is low, due to
errors in the correlation estimation. Additionally, this method relies
on several user-defined parameters to ensure convergence and opti-
mize performance, decreasing its practicality and potentially causing
the final estimated components to not be as independent as in a reg-
ular ICA decomposition.

In this study, we propose a new hybrid technique, consecutive
independence and correlation transform (C-ICT), which is able to
exploit the strengths of both ICA and CCA for joint analysis of mul-
timodal data. The main advantage of this method over others is that
it does not impose any restrictions on the mixing matrices like jICA
and allows for each modality to have a different number of factors.
Different ICA algorithms can be applied on each modality depend-
ing on the nature of the data, a flexibility not available either in jICA
or pICA. However, to avoid inaccurate estimation of the canonical
vectors, which results in overestimation of the sample canonical cor-
relations [18], CCA requires a large number of samples. Hence, we
address this issue by using only the informative components in the
computation of sample correlations as in [19, 20] enabling the appli-
cation of C-ICT to scenarios with both low as well as high sample
sizes. We evaluate C-ICT with simulated multimodal data as well
as with real EEG and fMRI data taken from healthy subjects as well
as patients with schizophrenia doing an auditory oddball task (AOD)
and demonstrate the advantages it offers over jICA and pICA.

2. BACKGROUND

Direct fusion of data from different modalities is challenging due
to the difficulty of obtaining a shared dimension across modalities.
Therefore, reducing each modality to a feature, a lower dimensional
multivariate representation of data, for each subject is an effective
approach [4, 21]. This reduction to feature space enables the ex-
amination of the association between the modalities through a com-
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(a) ICA step (b) CCA step

Fig. 1: Model of C-ICT forK = 2, (a) ICA on each dataset separately factorizes them into a set of subject profiles and independent associated
components, (b) CCA on transpose profiles provides maximally correlated profiles and corresponding combination of components common
across modalities.

mon subject dimension, i .e., variations across individuals. Consider
X[k] ∈ RM×Tk k = 1, 2, . . . ,K, are K feature datasets con-
structed from K modalities, where mth row of each feature dataset
is formed by extracting one feature from the mth subject and the
number of subjects M is common across datasets. Then the noise-
less ICA model on kth dataset is,

X[k] = A[k]S[k], (1)

where each dataset is a linear mixture of M latent sources, S[k] ∈
RM×Tk through an invertible mixing matrix, A[i] ∈ RM×M . ICA
estimates a demixing matrix W

[k]
ica such that the estimated source

components are statistically independent within each dataset and
can be computed using Ŝ

[k]
= W

[k]
icaX

[k] . Due to the fact that
we seek to maximize independence between the components, ŝ[k]j ,
j = 1, ..,M , estimation of demixing matrices can be accomplished
through the minimization of mutual information, written as

I
(
Ŝ[k]

)
=

M∑
j=1

H(ŝj
[k])− log |det

(
W

[k]
ica

)
| −H(X[k]) (2)

where H(·) is the differential entropy.
Note that the columns of the estimated mixing matrices, â[k]

j ,
j = 1, ..,M are referred to as the subject covariations/profiles that
establish connection across modalities [7, 16, 21]. However, ICA
can only analyze one dataset at a time, limiting its applicability for
multimodal fusion. Also an approach that combines the results of
separate ICAs does not effectively make use of the joint information
and results in suboptimal performance [22]. Thus, several extensions
of ICA have been proposed to jointly analyze multiple datasets. Two
popular extensions are jICA and pICA.

2.1. JICA and PICA

In order to enable joint analysis of multimodal data, jICA concate-
nates all the datasets together and applies a single ICA to the “joint”
dataset. For the datasets given in (1),[

X[1] . . . . X[K]
]
= A[S[1] . . . . S[K]] = AS, (3)

where, S ∈ RM×(T1+···+Tk) represents the joint source signals.
Here, the connection is determined through the common mixing ma-
trix for all datasets, which is a very strong assumption. Addition-
ally, S[i] contains latent sources from each modality by assuming
that a single density function can describe the latent sources for each
modality at the same time, which is another strong constrain.

To enhance inter-modality association, pICA maximizes the cor-
relation between the subject profiles at each iteration by adding an
extra term to the ICA cost function [11]. In contrast to jICA, pICA
performs separate ICAs on each modality simultaneously with a con-
straint as in

argmax
λ

I
(
Ŝ
[1]
)
+ I

(
Ŝ
[2]
)
+ λf

(
Â

[1]
, Â

[2]
)

(4)

where the linking term, f(·), introduces dataset correlation through
profiles and λ is dynamically adjusted to balance independence and
the dataset correlation. Encouraging profile correlation at each it-
eration step may result in estimated components that are not as in-
dependent as in a single ICA decomposition. Additionally, as the
algorithm not only looks to maximize independence but also correla-
tion, optimization of pICA depends on many user defined parameters
which may limit its practicality.

3. METHODOLOGY

3.1. C-ICT

Both jICA and pICA make assumptions that might limit their perfor-
mance and practical applicability. This motivates the development of
a new method that places very limited assumptions on the datasets,
exploits the full strength of ICA and at the same time, maximizes the
correlation between subject profiles across modalities. We propose a
hybrid model based on ICA and CCA to factor and fuse multimodal
data, called C-ICT. The generative model of C-ICT is given in Fig-
ure 1. We perform C-ICT in two steps: an ICA step to estimate inde-
pendent features and associated subject covariations followed by a
CCA step in order to exploit the complementary information across
datasets.

3.1.1. ICA

Consider two feature datasets, X[1] ∈ RM×T1 and X[2] ∈ RM×T2 ,
where each can be separately decomposed into a mixing matrix and
associated source components using (1). The mixing matrix and the
source component matrix for the kth dataset is denoted as A[k] ∈
RM×Tk and S[k] ∈ RM×Tk respectively. ICA estimates a demix-
ing matrix for the kth dataset, Wk

ica, and we compute the estimated

sources using Ŝ
[k]

= (W
[k]
ica)

T
X[k]. The columns of the estimated

mixing matrices, Â
[1]

and Â
[2]

, are the subject covariations that rep-
resent the relative weights for the corresponding source estimates for
each subject.
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3.1.2. CCA

In order to establish a connection across datasets, we perfom CCA
on the estimated subject covariations to maximize the correlation
between their transformations. CCA finds a pair of weighthing
vectors to transform â[1] and â[2] such that the normalized corre-
lation between their transformations, u[1] = (w

[1]
cca)

T
â[1], u[2] =

(w
[2]
cca)

T
â[2], is maximized. Therefore, performing CCA produces

combination of profiles whose transformations are maximally corre-
lated across the datasets and therefore, the combination of estimated
components that are associated with those profiles. Note that, the
use of CCA enables the extraction of different number of compo-
nents for each modality. This solution can be expanded to multiple
datasets by using M-CCA [8]. By calculating the informative com-
ponents present in the datasets and estimating canonical vectors only
for those components, a solution given in [19, 20] for CCA, C-ICT
can be applicable to both high and low sample size applications.

3.2. Order and Algorithm Selection

Determining the signal subspace from the observed data is a crucial
step, since many problems are overdetermined in nature. Determin-
ing the signal subspace by using model order selection significantly
improves the performance of BSS algorithm [23]. Performing ICA
only on the signal subspace is vital for the performance of overall
fusion and provides robustness. In this paper, we use the order se-
lection method described in [23]. Additionally, algorithm used for
ICA decomposition also plays an important role in its performance.
To our best knowledge, Infomax is the only algorithm that has been
used to implement pICA [11, 17]. Though Infomax is a popular
choice for ICA on fMRI data, it uses a fixed nonlinearity, which
tends to emphasize sources that are highly super-Gaussian. A more
robust algorithm based on a flexible density model, ICA-EBM [24]
can estimate sources from wide range of distributions leading to bet-
ter maximization of independence than Infomax [1]. For our work,
we use ICA-EBM for both C-ICT and jICA and Infomax for pICA.
Because of the iterative nature of both Infomax and ICA-EBM, we
make sure that we evaluate the consistency of a both algorithm using
multiple runs. We use minimum spanning tree method available in
the group ICA for FMRI toolbox (GIFT) [25] to identify a result that
represents a consistent estimate over multiple runs to use as the final
output.

4. IMPLEMENTATION AND RESULTS

4.1. Data Modalities and Extracted Features

The data used in this study are fMRI and EEG data from 16
schizophrenia patients as well as 22 healthy controls during the
performance of an auditory oddball task. The task involved the
subjects listening to three different types of auditory stimuli and
pressing a button when they hear a target sound [12]. Features
are extracted from the fMRI data by computing task related spatial
maps for each subject using the general linear model-based regres-
sion approach available in the statistical parametric mapping (SPM)
toolbox [26]. For the EEG data, we derive event related potentials
(ERP) by averaging small windows around the target tone across
repeated instances of the task for each subject. For our work, we
use ERPs from the Cz channel. We construct a matrix of 38 subjects
by 60186 voxels for fMRI and 38 subjects by 451 time points for
EEG. For jICA, to balance the contribution from each modality, we
follow the procedure given in [1], we repeat the EEG data 100 times
resulting 45100 time points.

4.2. Simulation Example

In this section, we present a simulation example of two datasets to
compare the relative performances of C-ICT, jICA and pICA. We
use Infomax for pICA and ICA-EBM for C-ICT and jICA. Info-
max tends to estimate sources that are high super-Gaussian where
ICA-EBM is a flexible algorithm. So, to be consistent with both
Infomax and ICA-EBM, for each dataset, we generate 10 sources
each of 1,000 independent and identically distributed (i.i.d.) samples
drawn from a zero-mean Laplacian distribution with a standard de-
viation of 4. Using the same notation as in Section 2, latent sources
of each dataset are linearly mixed using M × 10 mixing matrices.
The columns of mixing matrix, A[i] ∈ RM×10 are all from zero-
mean Gaussian distribution. To establish a link between datasets,
correlation is introduced between corresponding columns/profiles of
the mixing matrices. Correlated profiles of each dataset are of unit
standard deviation and uncorrelated ones have 0.5 standard devia-
tion. We use an order 10 for dimensionality reduction resulting in
X[i] ∈ R10×1000 for C-ICT and pICA, while X ∈ R10×2000 for
jICA. Results are averaged over 50 independent runs.

We compare the performance of the different methods by either
changing the number of subjects or the correlation value introduced
between the profiles. In the first case, we make three correspond-
ing profiles from each dataset correlated with a correlation matrix
C = [0.9 0.7 0.5] and change the number of subjects from 50 to
300 with a step size 50. That means the first columns of A[1] and
A[2] has a correlation of 0.9, second columns has a correlation of
0.7 and the third ones 0.5. For the second case, in order to probe the
robustness of each method with a reduced strength of the connection
between the datasets, we reduce the correlation value of one pair of
corresponding profiles from 0.9 to 0.4 with a step size of 0.1, while
keeping the subject count fixed at 50.

For both cases, we show the average correlation between esti-
mated and true components whose associated profiles are correlated
across datasets and the average correlation estimation error between
the estimated correlation matrix Ĉ to the true correlation matrix
C. Note that, to make a valid comparison with jICA, where all the
modalities share a single mixing matrix, we look for estimated pro-
files that has the highest correlation with the original profiles from
each dataset and calculate correlation of corresponding estimated
and true source components. The results of simulation examples
are given in Figure 2.

In the Figure 2, when subject count or correlation introduced is
low, C-ICT provides better performance than both pICA and jICA
and has a lower correlation estimation error than pICA. But as the
subject count or correlation value increases, pICA has lower corre-
lation estimation error than C-ICT. This makes sense as the pICA al-
gorithm maximizes the correlation between profiles when it is high.
But when correlation or number of samples is low, pICA incorrectly
estimates the correlation and thus biases the results in future itera-
tions, resulting in worse performance. We also see that jICA has
the worst performance of the three methods, due to the restrictive
common mixing matrix assumption.

4.3. Results and Discussion

Due to the spatial smoothness in fMRI and strong temporal corre-
lation in EEG data, using traditional information theoretic criteria
directly as in [27] would yield a highly overestimated order, due to
the fact that the independent and identically distributed samples as-
sumption is violated. For order selection of fMRI and EEG data,
we use a recent approach based on entropy rate given in [24], which
addresses this issue by directly modeling the sample dependence to
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Fig. 2: Estimation performance of common component with two
datasets as (a) and (b) with different number of subjects, (c) and
(d) with different correlation value. Note that jICA is not present
in (b) and (d). because of the common mixing matrix assumption.
Here component correlation is the average correlation between the
true and estimated components and correlation estimation error is the
average mean square error calculated between the original profiles
correlation and estimated profiles correlation.

write the likelihood. For C-ICT and pICA, we perform order selec-
tion on individual datasets and and chose the order we get for fMRI
dataset as we find estimated components are more stable at this or-
der. For jICA, since order selection is performed after concatenating
fMRI and EEG data, we perform order selection on the concatenated
dataset. We test the stability of the results for the orders given by
[24] for all three methods and select N = 20 for pICA and C-ICT,
N = 15 for jICA.

Since the data studied in this paper are from two groups, pa-
tients with schizophrenia and healthy controls, a natural objective is
to find factors in both datasets that can distinguish between the two
groups. This is accomplished by performing a two sample t-test on
the subject covariations to identify profiles that show a significant
(p < 0.05) group difference. The associated components of these
profiles are referred to as biomarkers. Note that for C-ICT, As the
order selected (N = 20) is close to the dimensionality of the datasets
(M = 38), we select the biomarkers after the ICA step and use only
those for the CCA step.

For all three methods, we choose only those components whose
associated profiles show significant group differences. For the fMRI
Z-maps, thresholded at Z = 2.7, red, orange, yellow refer to an in-
crease in controls over patients and blue denotes a decrease in con-
trols versus patients. As shown in Figure 3, all three methods cap-
ture components that can differentiate between healthy controls and
patients. JICA captures two components that are significant, while
pICA estimates only one significant component from each modality.
For C-ICT, shown in Figure 3 (a), we obtain three fMRI components
and two ERP components that are significant. The first two pairs of
components have correlation of 0.64 and 0.47. The top ERP com-
ponent in C-ICT reports N2/P3 complex where the associated fMRI
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Fig. 3: Components generated using all three methods. (a) Three
fMRI and two ERP components are found significant using C-ICT
where the first two pairs of components have correlation between
them of 0.64 and 0.47, (b) For jICA two components and for pICA
one component from each modality are found significant.

component shows higher activation in healthy controls in the parietal
region. The second fMRI component shows activation in the senso-
rimotor region where the ERP components reports N2. The third
fMRI components show activation in auditory region. The fMRI
components in jICA report a higher activation in healthy controls
in the sensorimotor region and part of the auditory region and asso-
ciated ERP components are similar to C-ICT. The ERP component
in pICA also shares similarities with those found using jICA and C-
ICT, since it is also shows temporal activation in the N2/P3 complex.
The fMRI component from pICA shows activity mainly in the sen-
sorimotor region. Comapring to pICA and jICA, C-ICT in general
picking up more significant biomarkers and also showing the degree
of association between the linked components through correlation.

5. CONCLUSION

In this paper, we introduce a novel method to analyze multimodal
data, C-ICT and compare it with two existing methods, jICA and
pICA, using both simulations as well as real multimodal data ob-
tained from patients with schizophrenia as well as healthy controls.
We find that C-ICT, while easing the limiting assumptions imposed
by jICA and pICA, also has superior performance to both methods
on simulated data. We also find that using real fMRI and ERP data,
C-ICT in general can find components that are better able to dif-
ferentiate between patients with schizophrenia and healthy controls
than either pICA or jICA. The success of the C-ICT in this context
motivates its use for the fusion in other problems, and also of more
than two modalities, using the multiset extension of CCA, MCCA,
to identify combinations of components that are associated across
multiple datasets.
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