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ABSTRACT

This paper focuses on the original RatioCut problem, which
is one of the most representative clustering paradigms. The
RatioCut criterion looks for a partition of the graph to achieve
the mincut cost while keeping each partition reasonably large.
This well-known problem is NP hard and its relaxed form has
been widely used in the past several decades. However, the re-
laxed RatioCut usually suffers two problems: not satisfactory
stable clustering performance, and undesired two-stage opti-
mization. In this work, we solve the original RatioCut prob-
lem by learning a new similarity matrix which has as many
connected components as the cluster number, so that the orig-
inal RatioCut constraint can be directly satisfied. An easily
implemented algorithm is derived to iteratively optimize the
proposed method. Experimental results on various real-world
benchmark datasets exhibit the effectiveness of the proposed
method to solve the RatioCut problem.

Index Terms— RatioCut clustering, discrete constraint
conditions, iterative optimization

1. INTRODUCTION

Graph-based clustering methods have been successful in da-
ta analysis. In the context of graph cut, one needs to find a
partition of the graph such that the edges between different
groups are exactly cut off. Since the edges between different
groups have the low weights while they have the high weight-
s within the same group, the mincut cost is often used as the
objective. A very early work about the bipartition to a graph
has been discussed in [1]. To prevent the solution of mincut
simply separating one individual vertex from the rest of the
graph, RatioCut [2] and Ncut [3] explicitly request that every
cluster is reasonably large. However, such a balancing condi-
tion makes them become NP hard [4], thus many subsequent
popular works trickly use eigenvalue decomposition to solve
a relaxed problem.

Although many recent applications have successfully em-
ployed graph cut technique in their domains, such as graph
clustering [5, 6], image segmentation [7, 8], and saliency
detection [9], few of them concern about a feasible solu-
tion to the original graph cut problem. Specifically, most

of these methods first adopt an optimization strategy to the
given graph to get a relaxed continuous solution and then
discretize it with K-means or spectral rotation algorithms
(see [10] and discussion therein). One disadvantage of this
kind of approaches is that the final clustering structures are
not identical with the data graph (Note that postprocessing
like K-means algorithm itself is not a stable operation). The
similar consideration is also taken into by [11], where they
tackle this problem by the graph approximation. Actually, for
the graph-cut problem, a welcome expectation is that we can
directly learn the discrete solution which strictly satisfies the
discrete constraint conditions.

In this work we propose a novel graph-based clustering
method, which can be used to effectively solve the original
RatioCut problem. To be specific, we introduce a new sim-
ilarity matrix, which is supposed to have c (c is the cluster
number) connected components, and helps suppress the con-
straints to be satisfied. Hence, there is no need to switch be-
tween discrete and continuity for the target variable in our
method. Different from the previous methods (e.g., unnor-
malized spectral clustering first calculates the eigenvectors
of Laplacian matrix and then clusters the derived represen-
tation of each data with K-means algorithm), we solve the
proposed objective via an easily implemented iterative opti-
mization algorithm. To validate the effectiveness of the pro-
posed method, empirical studies are conducted on differen-
t real-world benchmark data sets. The experimental result-
s demonstrate the proposed method outperforms other com-
pared methods in most cases, and more importantly it signifi-
cantly improves the performance of the relaxed RatioCut.

Notation: Throughout the paper, every matrix is written
as uppercase. For a matrix M , the i-th row, the j-th column,
and the ij-th element of M are denoted by mi, mj , and mij ,
respectively. The trace of matrix M is denoted by Tr(M).
The L2-norm of vector v is denoted by ‖v‖2, and the Frobe-
nius norm of matrix M is denoted by ‖M‖F .

2. PROBLEM FORMULATION

Given an undirected data graph described by a similarity ma-
trix W ∈ Rn×n, where n is the number of data points, the
main task of clustering is to partition these points into c group-
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s. We use Y ∈ Rn×c to denote the indicator matrix, where
yij = 1 if the i-th data is assigned to the j-th cluster, it is 0
otherwise. Let Y =

[
y1, y2, ..., yc

]
, and then c-way RatioCut

criterion is described as an optimization program of variable
Y [2]:

max
Y

1

c

c∑
j=1

yj
T
Wyj

yj
T
yj

s.t. Y ∈ {0, 1}n×c, Y 1c = 1n, (1)

where 1d denotes a d dimensional column vector of all 1’s.
By defining a scaled cluster assignment matrix F ∈ Rn×c as

F = Y
(
Y TY

)− 1
2 , (2)

the problem (1) is easily verified to be equivalent to the fol-
lowing form (where the const 1

c has been omitted)

min
F∈Disc

Tr
(
FTLF

)
, (3)

which is compact and has been widely used in previous clus-
tering works [12, 13]. In problem (3), L is the so-called
Laplacian matrix and L = D −W , where the degree matrix
D ∈ Rn×n is a diagonal matrix whose i-th diagonal element
is
∑

j wij , Disc is short for discrete and this constraint repre-
sents that F should satisfy the Eq. (2), where Y is discrete as
constrained in the problem (1). Obviously, the problem (3) is
NP hard and the optimal discrete solution cannot be directly
obtained. Thus, as stated above, many previous works resort
to solving the relaxed problem (i.e., the constraint is reduced
to FTF = Ic.) and add a discretizing postprocessing, which
makes it a two-stage procedure and not robust in practice.

Intuitively, if the data can be partitioned into c clusters,
an ideal neighbors assignment is supposed to contain exact-
ly c connected components. In this paper, we leverage this
property by introducing a new similarity matrix S ∈ Rn×n

with c connected components to help us tackle the problem
(3). Since this property doesn’t go straightforward with the
problem (3), we do the following transformation.

The Laplacian matrix of S is defined as LS = DS −
ST+S

2 , where the degree matrix DS ∈ Rn×n is a diagonal
matrix whose i-th diagonal element is

∑
j (sij + sji)/2. LS

is obviously symmetric and positive semi-definite which has
the following property [14]:
Theorem 1. The multiplicity c of the eigenvalue 0 of the
Laplacian matrix LS is equal to the number of connected
components in the graph with the similarity matrix S.
Furthermore, let σi (Ls) denote the i-th smallest eigenvalue
of Ls. According to the Ky Fans Theorem [15], the following
equation holds

c∑
i=1

σi (Ls) = min
FTF=Ic

Tr(FTLSF ). (4)

Therefore, we can add the right of Eq. (4) to the problem
(3), where each F shares the orthogonal constraint. Since we
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Fig. 1. Left: the learned Laplacian matrix LS ∈ R9×9 with
3 connected components; Right: the corresponding eigenvec-
tors and the selected components of F ∈ R9×3.

include S as a new variable, to avert that S is too sparse to
be capable of forming solid components, a regularized term
‖S‖2F is introduced. Thus we come to the new objective:

min
F,S

Tr
(
FTLF

)
+ α ‖S‖2F + λTr(FTLSF )

s.t. FTF = Ic, sij ≥ 0,
∑

j
sij = 1,

(5)

where α is a positive hyperparameter, each element in S is
constrained as nonnegative, and each row of S sums to 1.
Particularly, when λ is large enough, according to Eq. (4),
we know that the optimal solution S to the problem (5) will

make the term
c∑

i=1

σi (Ls) equal to zero and thus the similarity

matrix S will have c connected components. Under this con-
dition, from Theorem 2 [13] the solution F to the problem (5)
is consistent with the Disc constraint.
Theorem 2. If the Laplacian matrix LS has as many eigen-
values 0 as there are connected components, then the corre-
sponding eigenvectors are the indicator vectors of the con-
nected components.
Let us take an example. Suppose we have the Laplacian ma-
trix LS with 3 connected components like Fig. 1 (left) (For
better presentation, we rearrange S to be diagonal). Instead
of directly operating on LS , we calculate the eigenvectors of
its every diagonal block and then fill in the remaining emp-
ty positions with zeros (see Fig. 1 (right)). By arranging the
eigenvectors of each block based on the corresponding eigen-
values from large to small, the right-most eigenvector of each
diagonal block is 1√

ni
1ni

(ni is the size of a cluster), which
corresponds to the eigenvalue 0. Therefore, the scaled cluster
assignment matrix F = [f1, f2, f3], which can be verified to
exactly satisfy the Disc constraint.

3. OPTIMIZATION

Optimizing the problem (5) is still challenging because it in-
volves two variables F, S, and simultaneously they are cou-
pled with each other. In this section, we solve this problem
by alternatingly optimizing F and S.
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When S is fixed, the problem (5) becomes

min
FTF=I

Tr(FTLF ) + λTr(FTLSF )

= min
FTF=I

Tr
(
FT (L+ λLs)F

)
.

(6)

The optimal solution of F is formed by the c eigenvectors of
L+ λLS corresponding to the c smallest eigenvalues.

When F is fixed, the problem (5) becomes

min
sij≥0,

∑
j sij=1

α ‖S‖2F + λTr(FTLSF ). (7)

Let F = [f1; f2; ...; fn], then the following equation holds:

2Tr(FTLSF ) =
∑
i,j

‖fi − fj‖22 sij . (8)

Taking Eq. (8) into the problem (7), we have the following
equivalent form

min
sij≥0,

∑
j sij=1

α
∑
i,j

s2ij +
λ

2

∑
i,j

‖fi − fj‖22 sij . (9)

Considering that the problem (9) is independent for different
i, we solve the following problem separately for each i:

min
sij≥0,

∑
j sij=1

α
∑
j

s2ij +
λ

2

∑
j

‖fi − fj‖22 sij . (10)

Denoting vij = ‖fi − fj‖22, and denoting vi as a vector
whose j-th element equals to vij (and similarly for si), the
problem (10) can be written in vector form as

min
si≥0,si1n=1

∥∥∥∥si + λ

4α
vi

∥∥∥∥2
2

. (11)

This problem can be solved by [16] or an efficient iterative
algorithm proposed in [17].

Based on the above analysis, the detailed procedure for
solving the problem (5) is summarized in Algorithm 1.

Algorithm 1 The algorithm to solve the problem (5)
Input: W ∈ Rn×n, cluster number c, a large enough λ

Initialize F ∈ Rn×c, which is formed by the c eigenvectors
of LS = DS − WT+W

2 corresponding to the c smallest
eigenvalues
repeat

1. For each i, update the i-th row of S by solving the
problem (11)
2. Update F , which is formed by the c eigenvectors of
L+ λLS corresponding to the c smallest eigenvalues

until converge
Output: The cluster assignment matrix F ∈ Rn×c, and the

new similarity matrix S ∈ Rn×n

Table 1. Statistics of seven benchmark datasets.
data set # of size # of dimensionality # of class

Vehicle 846 18 4
Yeast 1484 8 10
Abalone 4177 8 29
Dermatology 1440 1024 20
COIL20 1440 1024 20
USPS 2007 256 10
Umist 575 1024 20

4. ANALYSIS OF ALGORITHM

In this section, we present more insights about the proposed
algorithm.

1) Computing the final clustering result. When Algorith-
m 1 converges, we obtain a new similarity matrix S with c
connected components, and a neat scaled cluster assignment
indicator F . Both of them can be naturally used to partition
the original data points into c groups and they obtain the iden-
tical results when λ is large enough.

2) Convergence analysis. The problem (5) can be divided
into two subproblems and we can obtain the optimal solution
to each of them. Therefore, by solving the subproblems al-
ternatively, the proposed algorithm will converge to a local
solution.

3) The parameters. At the first glance, there are two hy-
perparameters α, λ in the objective of problem (5) which need
to be tuned, but actually they can be easily handled. Since α
only appears in the subproblem (11), it can be absorbed in
λ (Throughout our experiments, we simply fix α to be 1).
Particularly, we determine the best λ in a heuristic way to ac-
celerate the computation. Specifically, if there are less than c
components in LS , we multiply λ by two; if more, we divide
λ by two; otherwise we stop the iteration. This strategy can
effectively relieve the cost for finding the optimal λ.

4) Time complexity. The major computation cost in each
iteration involves eigenvalue decomposition (solving the sub-
problem (6)) which is O(n3), while optimizing the subprob-
lem (11) is much light, only O(n). Suppose the needed iter-
ations of the proposed algorithm is T , we conclude that the
total complexity is about O(Tn3). Comparing with the stan-
dard relaxed RatioCut (O(n3+ncdi), d is the data dimension,
and i is the iterations), our method is expected to perform well
at the expense of the larger computation.

5. EXPERIMENTS

In this section, to explore the performance of the proposed
method for solving the original RatioCut problem, we con-
duct our experiments on seven benchmark datasets: Vehi-
cle, Yeast, Abalone, Dermatology (Dermato), COIL20, USP-
S, and Umist, which are briefly summarized in Table 1.
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Table 2. Experimental results on seven benchmark datasets.

ACC

Vehicle Yeast Abalone Dermato COIL20 USPS Umist
K-means 0.4421 0.3753 0.1391 0.7514 0.6944 0.6521 0.4452
RRC 0.4456 0.4111 0.1386 0.9536 0.7813 0.6312 0.4313
RNC 0.4456 0.3753 0.1515 0.9536 0.7708 0.6358 0.4661
NMF 0.3995 0.3740 0.1585 0.9508 0.7833 0.6746 0.4887
DRC 0.4492 0.4683 0.1764 0.9563 0.8271 0.7165 0.4870

NMI

vehicle Yeast Abalone Dermato Coil20 USPS Umist
K-means 0.1800 0.2425 0.1542 0.8616 0.7937 0.6299 0.6735
RRC 0.2131 0.2652 0.1470 0.9051 0.8326 0.7355 0.6766
RNC 0.2131 0.2401 0.1447 0.9037 0.8387 0.7330 0.6974
NMF 0.1676 0.2655 0.1460 0.9010 0.8540 0.7568 0.6979
DRC 0.2168 0.2994 0.1565 0.9098 0.8841 0.7718 0.7092

Vehicle Yeast Abalone Dermato COIL20 USPS Umist
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Fig. 2. Clustering results comparison between RRC and the proposed method DRC on seven benchmark datasets

As a convention in [18, 11], the proposed Directly solving
RatioCut (DRC) method is compared withK-means, Relaxed
RatioCut (RRC), Relaxed Normalized Cut (RNC), NMF [19]
methods. The input graph is constructed using the technique
proposed in [20], where the Gaussian kernel can be self-tuned
(The default number of nearest neighbors is 10 for every da-
ta set). For all the methods involving K-means, including
K-means itself, we use the random initialization strategy and
repeat each of them for 100 times. Their respective result-
s in terms of the minimum K-means value will be reported.
As for our method, we run it only once with the initializa-
tion described in Algorithm 1, where the maximum number
of iterations is set as 30, because we find that our algorithm
always converge in 30 times. To measure the final cluster-
ing performance, we adopt two regular criteria: the clustering
accuracy (ACC) and normalized mutual information (NMI).
Table 2 shows the clustering results of each method, where
the best result is marked in bold face.

From Table 2, we conclude that the proposed method DR-
C outperforms the competing methods almost on every data
set (Particularly, it shows the great improvement on Yeast,
COIL20, and USPS.). The distinct difference among DRC
and other graph-based methods is that DRC learns a new sim-

ilarity matrix after the optimization and thus it is insensitive
to the quality of input similarity matrix W . Since W has tri-
fling influence in subproblem (6) when λ is large enough, in
this perspective, the input graph can be considered as an ini-
tialization of our algorithm.

Since RRC is a representative method for solving the Ra-
tioCut problem, it is an important baseline in our experiments.
We compute the mean and the corresponding variance of R-
RC on each dataset over 100 times. The comparison between
RRC and DRC is presented as in Fig. 2. It is observed that our
once-run DRC impoves RRC both in ACC and NMI. Seeing
that RRC obtains very unstable results (noticeable variances)
in most datasets, we conclude that the proposed method pro-
vides a practical solver for the RatioCut problem.

6. CONCLUSIONS

In this paper, we directly solve the original RatioCut problem.
By learning a new similarity matrix with as many connected
components as its cluster number, we circumvent the stric-
t discrete constraints in RatioCut and solve the new objec-
tive iteratively. The experimental results on seven benchmark
datasets prove the effectiveness of the proposed method.
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