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ABSTRACT
In real-world machine learning applications, we are often
faced with a situation where only a small number of training
samples is available due to high sampling costs. For instance,
prediction of mental states such as drowsiness from physio-
logical information is a typical example. To cope with this
problem, classifier training methods only from positive and
unlabeled data and multi-task learning methods for improv-
ing the classification performance by solving multiple related
tasks simultaneously have been actively investigated recently.
In this paper, we combine these methods and propose a multi-
task learning method that can handle positive-unlabeled tasks
and positive-negative tasks in a unified manner. Through ex-
periments on drivers’ drowsiness prediction, we demonstrate
the effectiveness of the proposed method.

Index Terms— Multi-task learning, positive and unla-
beled learning, mental state prediction

1. INTRODUCTION

In real-world machine learning applications, we are often
faced with a situation where only a small number of labeled
training samples is available due to high sampling costs.

An example of such a small sample situation that we will
consider throughout the paper is prediction of a person’s men-
tal states such as drowsiness and stress from physiological in-
formation such as heart beats. Labeling of drowsiness is usu-
ally carried out by subjective measures such as the Karolin-
ska sleepiness scale1, experts’ facial expression scoring, or
measuring the response time of executing some task, which
involve time-consuming manual annotation processes.

To cope with such small sample problems, various ap-
proaches have been explored so far. Positive-unlabeled learn-
ing (PU learning) allows us to train a binary classifier only
from positive and unlabeled data [2, 3, 4]. PU learning is ef-
fective when negative samples are expensive to collect, while
positive and unlabeled samples are easy to collect. Drowsi-
ness prediction matches well with this situation since negative

1The Karolinska sleepiness scale is a 9-point Likert scale rated from “very
alert (1)” to “fighting sleepiness (9)” [1].

samples (being drowsy) are expensive to collect, while posi-
tive samples (non-drowsy) and unlabeled samples can be ob-
tained abundantly, thanks to recent advances in wearable sen-
sors. Another popular approach to compensating for the small
number of training samples is multi-task learning [5, 6, 7],
which solves multiple learning tasks simultaneously by shar-
ing information among related tasks. Drowsiness prediction
is suited also to multi-task learning because drowsiness clas-
sifiers may have variations depending on subjects and thus
drowsiness classification problems for multiple subjects can
be naturally formulated as multi-task learning [8, 9].

In this paper, we combine these two approaches and
propose a novel multi-task learning method that can han-
dle positive-unlabeled tasks (PU tasks) and positive-negative
tasks (PN tasks) in a unified manner.

2. PROBLEM FORMULATION

In this section, we formulate a binary classification problem
and review the frameworks of positive and unlabeled learning
and multi-task learning.

Positive and Negative Learning: Let x ∈ Rd be a pat-
tern and y ∈ {+1,−1} be its class label, which are regarded
as random variables equipped with unknown joint probability
density p(x, y). In a standard binary classification problem,
we are given independent and identically distributed train-
ing samples {(xi, yi)}ni=1 from the joint probability density
p(x, y). The goal of binary classification is to, from the train-
ing samples, obtain classifier g : Rd → R that classifies a test
pattern x to its true class y by sign(g(x)).

More precisely, we want to obtain classifier g that min-
imizes the risk defined as R(g) = E[ℓ(yg(x))], where E
denotes the expectation over p(x, y) and ℓ(yg(x)) is a loss
when y is predicted as g(x). Typically, the squared loss
ℓ(z) = (1 − z)2 is used. Approximating the expectation
over unknown p(x, y) with the average over training sam-
ples {(xi, yi)}ni=1, a classifier is trained as ming R̂(g), where
R̂(g) = 1

n

∑n
i=1 ℓ(yig(xi)). Since positive and negative

samples are used for classifier training, we refer to this prob-
lem setting as positive and negative (PN) learning.
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Positive and Unlabeled Learning: When negative sam-
ples are not obtained easily while positive and unlabeled sam-
ples can be obtained abundantly, positive and unlabeled (PU)
learning is a useful approach to binary classification [2, 3, 4].

Suppose we are given positive and unlabeled datasets:

X p := {xp
i }

np

i=1

i.i.d.∼ pp(x|y = +1),

X u := {xu
i }

nu

i=1
i.i.d.∼ pu(x),

where p(x|y) is class-conditional density, p(x) = πp(x|y =
+1) + (1− π)p(x|y = −1) is the marginal density, and π =
p(y = +1) is the class-prior probability for the positive class.

The risk R can be decomposed as

R(g) = πEp[ℓ(g(x))] + (1− π)En[ℓ(−g(x))], (1)

where Ep[·] and En[·] denote the expectations over posi-
tive and negative class-conditional distributions, respectively.
Since negative samples are not available in the PU learning
setup, let us use the following relation induced from the defi-
nition of marginal density:

Eu[ℓ(−g(x))] = πEp[ℓ(−g(x))] + (1− π)En[ℓ(−g(x))],

where Eu denotes the expectation over unlabeled samples.
We then obtain the following risk expression for PU classi-
fication by eliminating (1− π)En[ℓ(−g(x))] in Eq.(1) [4]:

R(g) = πEp

[
ℓ̃(g(x))

]
+ Eu[ℓ(−g(x))],

where ℓ̃(z) = ℓ(z) − ℓ(−z) is called the composite loss. In
practice, the expectations over positive and unlabeled samples
are replaced with corresponding sample averages.

du Plessis et al. [4] showed that, for convex ℓ(z), ℓ̃(z) is
linear if and only if it is convex. For example, the squared
loss, the logistic loss, and the double hinge loss yield a linear
composite loss. Without loss of generality, let ℓ̃(z) = −z.
Then the risk for PU classification is given as

R(g) = πEp[−g(x)] + Eu[ℓ(−g(x))].

Multi-Task Learning: Suppose that we have T binary
classification tasks and training samples {(xi, yi, ti)}Ni=1,
where ti ∈ {1, . . . , T} denotes the task index. The idea of
multi-task learning (MTL) is to share information across re-
lated tasks by solving all tasks simultaneously [5]. Among
various MTL formulations, regularized MTL is one of the
most practical approaches [6, 7], which imposes solutions of
two different tasks to be close when these tasks are similar:

J(g) =
∑N

i=1 ℓ(gt(xi,αti), yi) +
∑T

t=1 rt(αt)

+
∑T

t,t′=1 st,t′(αt −αt′),

where αt is a model parameter vector for the t-th task, r is a
regularization function and s is an information sharing func-
tion. Typically, the ℓ2-norm is used for r and s.

3. MULTI TASK LEARNING WITH POSITIVE AND
UNLABELED DATA

In this section, we introduce our novel method called multi-
task learning with positive and unlabeled data (PU-MTL),
where tasks with positive and negative samples (PN tasks)
and tasks with positive and unlabeled samples (PU tasks) are
treated in a unified manner in the multi-task learning frame-
work.

Formulation: Consider a multi-task learning problem
which includes k PN tasks and T−k PU tasks. Let x ∈ Rd be
a pattern, y ∈ {+1,−1} be its class label, and t ∈ {1, . . . , T}
be the task index. We assume that, for the t′-th PN task, we
are given a positive dataset X p̃

t′ and a negative dataset X n
t′ :

X p̃
t′ :=

{
xp̃
i

}mp,t′

i=1
∼ pp̃t′(x|y = +1),

X n
t′ := {xn

i }
mn,t′

i=1 ∼ pnt′(x|y = −1),

where mp,t′ and mn,t′ denote the number of positive and neg-
ative samples of the t′-th PN task. Similarly, we assume that,
for the t-th PU task, we are given a positive dataset X p

t and
an unlabeled dataset X u

t :

X p
t := {xp

i }
np,t

i=1 ∼ ppt (x|y = +1),

X u
t := {xu

i }
nu,t

i=1 ∼ put (x),

where np,t and nu,t denote the number of positive and un-
labeled samples of the t-th PU task. Let L = M + N ,
M = Mp +Mn, N = Np +Nu, Mp = mp,1 + · · · +mp,k

be the total number of positive samples in PN tasks, Mn =
mn,1+ · · ·+mn,k be the total number of negative samples in
PN tasks, Np = np,T−k + · · ·+ np,T be the total number of
positive samples in PU tasks, and Nu = nu,T−k + · · ·+nu,T

be the total number of unlabeled samples in PU tasks. Then
the PU-MTL criterion we propose is given by

Ĵ(α) =
N

L
Ĵpu(α1, . . . ,αT ) +

M

L
Ĵpn(α1, . . . ,αT )

+
1

2

T∑
t=1

λtα
⊤
t αt +

w

4

T∑
t,t′

γt,t′(αt −αt′)
⊤(αt −αt′),

where Ĵpu denotes the PU learning criterion, Ĵpn denotes the
PN learning criterion, λt ≥ 0 is the regularized parameter
of the t-th task, w ≥ 0 is a parameter to control the magni-
tude of information sharing, and γt,t′ ∈ [0, 1] is the similarity
between the t-th and t′-th tasks.

Efficient Implementation: For the t-th classification
task, let us employ a linear-in-parameter model given
by gt(x) = α⊤

t φt(x), where αt = (αt,1, . . . , αt,b)
⊤

and φ(x) = (φ1(x), . . . , φb(x))
⊤ are a parameter

vector and a basis function vector, respectively. As
the basis function, we employ the Gaussian kernel
φℓ(x) = exp

(
−||x−cℓ||2

2h2

)
, where {c1, . . . , cL} =
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Algorithm 1 Similarity estimation
Initialize similarity γt,t′ = γ ≥ 0, ∀t, t′
repeat

Estimate α using current γt,t′
Update γt,t′ as γt,t′ = exp

(
−∥αt −αt′∥2

)
.

until α converges

{xp̃
1 , . . . ,x

p̃
Mp

,xn
1 , . . . ,x

n
Mn

,xp
1 , . . . ,x

p
Np

,xu
1 , . . . ,x

u
Nu

}
are the Gaussian centers and h > 0 is the Gaussian
bandwidth.

Below, we consider the squared loss function ℓ(z) =
1
4 (z − 1)2. Then Ĵpu and Ĵpn included in PU-MTL criterion
can be expressed with α = (α⊤

1 , . . . ,α
⊤
T )

⊤ ∈ RbT as

Ĵpu(α) =
1

4Nu
α⊤Ψ⊤

u Ψuα+
1

2Nu
1⊤Ψuα− π

Np
1⊤Ψpα,

Ĵpn(α) =
1

4M
α⊤Ψ⊤

p̃ Ψp̃α+
1

4M
α⊤Ψ⊤

n Ψnα

+
1

2M
1⊤Ψnα− 1

2M
1⊤Ψp̃α,

where

Ψp =
(
ψt1(x1), . . . ,ψtNp

(xp
Np

)
)⊤

∈ RNp×bT ,

Ψu =
(
ψt1(x1), . . . ,ψtNu

(xu
Nu

)
)⊤ ∈ RNu×bT ,

Ψp̃ =
(
ψt1(x

′
1), . . . ,ψtMp

(x′p
Mp

)
)⊤

∈ RMp×bT ,

Ψn =
(
ψt1(x

′
1), . . . ,ψtMn

(x′n
Mn

)
)⊤ ∈ RMn×bT ,

ψt(x) =
(
0⊤
b(t−1),φt(x)

⊤,0⊤
b(T−t)

)⊤
∈ RbT ,

and 0b is the b-dimensional vector with all zeros. Then the
minimizer α̂ of the learning criterion Ĵ(α) can be analyti-
cally computed as

α̂ =

(
N

L

1

2Nu
Ψ⊤

u Ψu+
1

2L
Ψ⊤

p̃ Ψp̃+
1

2L
Ψ⊤

n Ψn+C ⊗ Ib
)−1

(
N

L

π

Np
Ψ⊤

p 1− N

L

1

2Nu
Ψ⊤

u 1+
1

2L
Ψ⊤

p̃ 1− 1

2L
Ψ⊤

n 1

)
,

whereC is the T ×T matrix with the (t, t′) element given by

Ct,t′ =

{
λt + w

∑T
t′′=1 γt,t′′ − wγt,t (t = t′),

−wγt,t′ (t ̸= t′),

and ⊗ denotes the Kronecker product. Thanks to the analytic-
form solution, the minimizer of the PU-MTL criterion for the
squared loss function can be computed efficiently.

In our PU-MTL implementation, we estimated the model
parameters and the task-task similarity γt,t′ alternately, as de-
scribed in Algorithm 1.

4. REAL-WORLD DROWSINESS PREDICTION

In this section, we demonstrate the effectiveness of PU-MTL
through experiments on drivers’ drowsiness prediction.

Background: Drivers’ drowsiness prediction is an impor-
tant research topic for traffic accident prevention. We focus on
drowsiness prediction from heart beat information, because
recent advances in wearable technologies allow us to measure
heart beat information on a daily basis. The cardiovascular
system reflects the activity of the autonomic nervous system
[10], which is deeply related to mental states such as stress
[11] and drowsiness [12]. Since the transition of drowsiness
during driving is in the course of nature, manual annotation
is necessary to collect drowsy samples. On the other hand,
awake samples can be obtained easily if drivers are assumed
to be in an arousal state in the early stage of driving. In the
following, we consider a situation where positive and negative
samples can be collected from several subjects in laboratory
experiments, and positive and unlabeled samples are collected
from a specific driver.

Data Collection: Three healthy males in their 20’s to
40’s participated in this experiment2. The subjects drove our
driving simulator along an expressway at around 100 km/h
with overtaking other cars which run at 80 km/h, until an ex-
pert observed the subjects’ strong drowsiness or the subjects
completed the whole driving task (about 150 km distance).
Each subject performed the experiment 10 times. We adopted
AP108 (TEAC Corp.) as a wireless physiological signal am-
plifier for data acquisition to measure an electrocardiogram
(ECG) during driving. The disposable electrodes were at-
tached on the subject’s chest. The sampling frequency was
500 Hz. At the same time, the subject’s face was recorded by
a video camera mounted on the cabinet of the driving simula-
tor. This movie was used for detailed drowsiness scoring by
experts after the experiment.

Data Processing: To avoid the influence on driving, we
employed a sleepiness level based on facial expressions [13],
which is commonly used for driver evaluations [14], as the
ground truth of drowsiness. Experts checked the movie of
subjects’ face during driving and rated the sleepiness level
from 1 (“Not sleepy”) to 5 (“Very sleepy”) every 60 seconds.
To convert the target problem into a binary classification prob-
lem, we defined the drowsiness scores from 1 to 2 as the pos-
itive class (“awake”) and from 3 to 5 as the negative class
(“drowsy”). In this experiment, only five trials were anno-
tated and remaining five trials were completely unlabeled.

We processed ECG to extract the following seven fea-
tures as input vector x: LF: The spectral power of the low
frequency (LF) component (0.04-0.15 Hz), HF: The spectral
power of the high frequency (HF) component (0.15-0.4 Hz),

2The design of experiments was approved and conducted according to
the “Ethical guidelines for research involving with human subject” of Toyota
Motor Corporation. We sufficiently explained the details before the experi-
ment and obtained informed consents from all the subjects.
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Pnn50: The number of the adjacent RRIs’ differences which
exceed 50 ms, RMSSD: The root mean square of the adja-
cent RRIs’ differences, SD/RMSSD: The standard deviation
of RRI divided by RMSSD, RRV: The variance of RRI, The
number of Peak: The number of peaks of RRI time series.
Here, the RR-interval (RRI) which is the peak-to-peak inter-
val of R-wave of ECG was calculated at first. We then com-
puted these features at 60 seconds intervals with 120 second
sliding windows. Finally, these features were normalized to
have zero mean and unit standard deviation for each subject.

Evaluation Method and Result: We consider a scenario
that positive and unlabeled samples can be obtained from
a new driver, and positive and negative samples were col-
lected from two subjects beforehand. In this scenario, the
goal is to provide a good drowsiness predictor to the new
driver. Therefore, we evaluate the prediction performance
of the PU task for the new driver. The following methods
are compared: PU-MTL: The proposed method, PUL: Or-
dinary PU learning only from a new driver’s PU samples,
PNL: Ordinary PN learning with labeled samples obtained
from the two subjects. The squared loss was used for all
the methods as the loss function. We set the number of
PN training samples to (mp,mn) = (5, 5), (20, 20) for PU-
MTL and PNU, and the number of PU training samples to
(np, nu) = (10, 10), (10, 30), (10, 100), (10, 200) for PU-
MTL and PUL. All combinations of these settings were in-
vestigated.

Here, we randomly divided the samples into the training,
validation and test sets. We chose positive and negative sam-
ples from the annotated five trials and unlabeled samples from
the non-annotated five trials. We assumed that the class prior
of unlabeled samples was equal to that of labeled samples and
was known at training time3. Hyperparameters λ, h, w were
selected by using a validation set in terms of the misclassifica-
tion rate (i.e., the zero-one loss) over all PU and PN tasks. The
validation samples are composed of 10 positive samples and
30 unlabeled samples. Moreover, we chose 60 positive sam-
ples and 60 negative samples from the annotated five trials of
the PU task as test samples. This procedure was repeated 100
times with different random seeds.

Tables 1 and 2 show the mean and standard deviation of
the misclassification rate of subject t (which is the PU task)
for different sample size. The bold face indicates the best
and comparable methods according to paired t-test at the sig-
nificance level 0.05. When the PN training sample size was
(5, 5), PU-MTL and PUL tended to outperform PNL, imply-
ing that the PN sample size was not sufficient for PNL and
PU-MTL used PU samples more effectively. As the num-
ber of unlabeled samples was increased, the misclassification
rate of PU-MTL and PUL was gradually improved. On the
other hand, when the PN training sample size was increased
to (20, 20), the performance of PUL was worse than that of

3Practically, class prior estimation methods from PU samples such as [15]
may be used.

Table 1. Comparison of the mean and standard deviation of
the misclassification rate over 100 trials. The PN sample size
is (mp,mn) = (5, 5).
(np, nu) PU task PU-MTL PUL PNL

Subject 1 0.440(0.077) 0.460(0.076) 0.470(0.075)
(10,10) Subject 2 0.270(0.051) 0.274(0.046) 0.493(0.093)

Subject 3 0.408(0.064) 0.415(0.066) 0.411(0.084)
Subject 1 0.436(0.073) 0.442(0.069) 0.470(0.075)

(10,30) Subject 2 0.260(0.044) 0.262(0.045) 0.493(0.093)
Subject 3 0.392(0.053) 0.396(0.055) 0.411(0.084)
Subject 1 0.441(0.074) 0.442(0.075) 0.470(0.075)

(10,100) Subject 2 0.254(0.044) 0.256(0.044) 0.493(0.093)
Subject 3 0.385(0.056) 0.391(0.050) 0.411(0.084)
Subject 1 0.432(0.080) 0.433(0.082) 0.470(0.075)

(10,200) Subject 2 0.257(0.046) 0.254(0.045) 0.493(0.093)
Subject 3 0.387(0.053) 0.384(0.054) 0.411(0.084)

Table 2. Comparison of the mean and standard deviation of
the misclassification rate over 100 trials. The PN sample size
is (mp,mn) = (20, 20).
(np, nu) PU task PU-MTL PUL PNL

Subject 1 0.432(0.070) 0.460(0.076) 0.447(0.066)
(10,10) Subject 2 0.267(0.050) 0.274(0.046) 0.489(0.075)

Subject 3 0.409(0.064) 0.415(0.066) 0.365(0.063)
Subject 1 0.424(0.069) 0.442(0.069) 0.447(0.066)

(10,30) Subject 2 0.257(0.040) 0.262(0.045) 0.489(0.075)
Subject 3 0.399(0.063) 0.396(0.055) 0.365(0.063)
Subject 1 0.434(0.074) 0.442(0.075) 0.447(0.066)

(10,100) Subject 2 0.256(0.043) 0.256(0.044) 0.489(0.075)
Subject 3 0.385(0.052) 0.391(0.050) 0.365(0.063)
Subject 1 0.439(0.082) 0.433(0.082) 0.447(0.066)

(10,200) Subject 2 0.259(0.046) 0.254(0.045) 0.489(0.075)
Subject 3 0.384(0.054) 0.384(0.054) 0.365(0.063)

PU-MTL and PNL. With this condition, information sharing
worked well since PN tasks had enough training samples.
Overall, we experimentally found that PU-MTL is effective
in drowsiness prediction.

5. CONCLUSION

In this paper, we proposed a novel method called multi-task
learning with positive and unlabeled data (PU-MTL) to han-
dle small sample problems emerging in real-world machine
learning applications. Essentially, PU-MTL treats ordinary
positive-negative tasks and positive-unlabeled tasks in a uni-
fied manner in a multi-task learning framework. We also pro-
vided an efficient implementation of PU-MTL for a linear-
in-parameter model with the squared loss, allowing efficient
computation of the globally optimal solution in a closed-form.
We applied the proposed PU-MTL to drivers’ drowsiness pre-
diction, and demonstrated that PN tasks can assist the per-
formance of the PU task via information sharing and unla-
beled samples can improve the prediction performance. On
the other hand, the classification accuracy was insufficient for
subjects 1 and 3. In future work, we will conduct theoretical
analysis of PU-MTL, improve the drowsiness predictor and
apply PU-MTL to other real-world problems.
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“Monitoring of mental workload levels during an every-
day life office-work scenario,” Pervasive and Ubiqui-
tous Computing, vol. 17, no. 2, pp. 229–239, 2013.

[12] J. Vicente, P. Laguna, A. Bartra, and R. Bailon,
“Drowsiness detection using heart rate variability,”
Medical & Biological Engineering & Computing, vol.
54, pp. 927–937, 2016.

[13] H. Kitajima, N. Numata, K. Yamamoto, and Y. Goi,
“Prediction of automobile driver sleepiness (1st report,
rating of sleepiness based on facial expression and ex-
amination of effective predictor indexes of sleepiness (in
japanese),” Transactions of the Japanese Society of Me-
chanical Engineers, Series C, vol. 63, pp. 3059–3068,
1997.

[14] S. Hachisuka, K. Ishida, T. Enya, and M. Kamijo,
“Facial expression measurement for detecting driver
drowsiness,” in Engineering Psychology and Cognitive
Ergonomics, D. Harris, Ed., 2011, pp. 135–144.

[15] M. C. du Plessis and M. Sugiyama, “Class prior estima-
tion from positive and unlabeled data,” IEICE Transac-
tions on Information and Systems, vol. E97-D, no. 5, pp.
1358–1362, 2014.

2305


