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ABSTRACT
This paper studies clustering using a Kolmogorov-Smirnov
based K-means algorithm. All data sequences are assumed to
be generated by unknown continuous distributions. The pair-
wise KS distances of the distributions are assumed to be low-
er bounded by a certain positive constant. The convergence
analysis of the proposed algorithms and upper bounds on the
error probability are provided for both known and unknown
number of clusters. More importantly, it is shown that the
probability of error decays exponentially as the sample size
of each data sequence goes to infinity, and the error exponent
is only a function of the pairwise KS distances of the distri-
butions. The analysis is validated by simulation results.

Index Terms— Kolmogorov-Smirnov distance, cluster-
ing, exponential consistency, probability of error, K-means
algorithm.

1. INTRODUCTION

The goal of clustering is to group objects in such a way that
the objects in the same cluster are similar. This paper aims
to cluster sequences generated by unknown continuous distri-
butions into classes based on the Kolmogorov-Smirnov (KS)
distance such that each class contains all the sequences gen-
erated from the same distribution. The minimum pairwise KS
distance of the distributions is assumed to be lower bounded
away from 0. Furthermore, the number of distribution clusters
is also of interest if it is not known a priori.

The unsupervised learning problem has been widely stud-
ied [1, 2]. If we view the data sequences as multivariate da-
ta, our problem can be solved by applying typical clustering
methods, e.g. K-means clustering [3–5]. However, these ap-
proaches do not exploit the underlying generative model that
these data sequences can possibly have in addition to being
vectors, and hence the distance metric used in these approach-
es is mostly Euclidean distance or the distance induced by
other vector norms. On the other hand, there are recent stud-
ies of anomaly detection problems [6–9], in which each da-
ta sequence consists of independently identically distributed
(i.i.d.) samples generated by a certain unknown distribution.
These studies exploited the generative model of the data in a
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similar way as the approach proposed in this paper, but with
a different goal of detecting anomalous data sequences.

Among various distance functions used in clustering prob-
lems [10,11], the KS distance/statistics is a suitable one given
the data sequences. There are several works that are closely
related to the approach presented here. In [12], the authors
proposed an initialization method for the K-means algorith-
m. Given the number of clusters, at the initialization step, the
first center is randomly chosen while the remaining centers
are the observations that have the largest minimum distance
to the previous centers. Another initialization approach is to
randomly choose all the initial centers [11]. With an unknown
number of clusters, the algorithm proposed in [13] assumed a
maximum number of clusters. It began with one cluster con-
taining all the observations and the cluster was split if the two-
sample KS statistics between the center and any sequence ex-
ceeded the threshold determined by the significance level and
the number of clusters was small. The algorithms in [11–13]
were all validated by numerical results without carrying out
an analysis of the probability of error.

The contribution of the present work is as follows. Giv-
en the number of clusters, the KS distance based K-means
algorithm using the initialization method proposed in [12] is
analyzed. With an unknown number of clusters, an algorith-
m capable of estimating the number of clusters and grouping
the sequences is proposed and analyzed. The upper bounds on
the probability of error for both cases are derived. The anal-
ysis helps establish both the convergence and the exponential
consistency of the algorithms for both cases. Furthermore,
meaningful bounds on the error exponents are established for
both cases which turn out to be the same function of the low-
er bound of the pairwise KS distances of the distributions. It
is also worth noting that the proposed algorithm for an un-
known number of clusters works without the exact minimum
pairwise KS distances of the distributions, and the analysis
implies that with high probability a single iteration provides
good enough estimate results given large sample size.

2. SYSTEM MODEL

2.1. Clustering Problem

Suppose there are M data sequences {x1, . . . ,xM} to be
clustered. Each sequence xi consists of i.i.d. samples gen-
erated by one of K distinct distributions in the set P =
{p1, . . . , pK}, and is said to belong to cluster k if it is gener-
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ated by pk. We further assume that

min
k 6=k′

dKS(pk, pk′) > DKS , (1)

where dKS(pk, pk′) is defined in (2). The goal is to group all
data sequences belonging to the same cluster together.

An error occurs if and only if the sequences generated
by different distributions are assigned to the same cluster, or
sequences generated by the same distribution are assigned to
more than one cluster. Denote byPe the probability of error of
a clustering algorithm. The algorithm is said to be consistent
if limn→∞ Pe = 0, where n is the sample size. The algorithm
is said to be exponentially consistent if

lim
n→∞

− 1

n
logPe > 0.

We are also interested in characterizing the error exponent.

2.2. Preliminaries of KS Distance

Suppose x = {x1, . . . , xn} is generated by the distribution
p. Then the empirical cumulative distribution function (c.d.f.)
induced by x is given by

Fx(a) =
1

n

n∑
i=1

1[−∞,a]xi,

where 1[−∞,x] is the indicator function. Let the true c.d.f. of
p evaluated at a be Fp(a). Define the KS distance as

dKS(?, ∗) = sup
a∈R
|F?(a)− F∗(a)|, (2)

where the arguments of the function can be either sequences
or distributions. A well-known upper bound on the conver-
gence rate of the KS distance between the empirical and true
c.d.f. was given by Dvoretzky-Kiefer-Wolfowitz, and later
refined by Massart in [14] into the following Lemma.
Lemma 2.1. [14] Suppose x is generated by p and Fx(a) is
the corresponding empirical c.d.f.. Then

P

(
sup
a∈R

∣∣∣∣Fx(a)− Fp(a)

∣∣∣∣ > ε

)
≤ 2 exp

(
− 2nε2

)
.

The following lemmas are extensions of Lemma 2.1:
Lemma 2.2. Suppose x and z are generated by p1, and y is
generated by p2. Then,

P

(
dKS(x, z) > dKS(y, z)

)
≤ 6 exp

(
− nd2KS(p1, p2)

8

)
.

Lemma 2.3. Let x ∼ p1 and y ∼ p2. Then

P

(
dKS(x,y) <

dKS(p1, p2)

2

)
≤ 4 exp

(
− nd2KS(p1, p2)

8

)
.

Lemma 2.4. Suppose x and y are generated by p. Then

P

(
dKS(x,y) > ε

)
≤ 4 exp

(
− nε2

2

)
.

The proofs of Lemmas 2.2 - 2.4 will be provided in a
forthcoming paper. Lemmas 2.1 - 2.4 lead to a reasonable KS
based K-means algorithm which is to group all the sequences
that are close to each other in terms of KS distances.

3. KNOWN NUMBER OF CLUSTERS

The clustering algorithm for known K is summarized in Al-
gorithms 1 and 2. The method proposed in [12] is used for
center initialization. The initial K centers can be chosen se-
quentially such that the center of the k-th cluster is the se-
quence that has the largest minimum KS distance to the pre-
vious k − 1 centers. Given the centers, each sequence is as-
signed to the cluster for which the sequence has the minimum
KS distance to the center. For a cluster, a sequence is assigned
as the center if the sum of its KS distances to all sequences in
the cluster is the smallest. The algorithm continues until the
clustering result converges.

Algorithm 1 KS-based initialization given K

1: Input: {xj}Mj=1, number of clusters K.
2: Output: Partition set {Ck}Kk=1.
3: {Center initialization}
4: Arbitrarily choose one xj1 as c1.
5: for k = 2 to K do
6: ck ← argmaxxj

(
minl∈{1,...,k−1} dKS(xj , cl)

)
7: end for
8: {Cluster initialization}
9: Set Ck ← ∅ for 1 ≤ k ≤ K.

10: for j = 1 to M do
11: Ck ← Ck ∪ {xj}, where

k = arg min
k∈{1,...,K}

dKS(xj , ck)

12: end for
13: Return {Ck}Kk=1

Algorithm 2 KS based clustering given K

1: Input: {xj}Mj=1, number of clusters K.
2: Output: Partition set {Ck}Kk=1.
3: Initialization: {Ck}Kk=1 by Algorithm 1.
4: Method:
5: while not converge do
6: {Center update}
7: for k = 1 to K do
8: ck ← argminxj∈Ck

∑
xj′∈Ck

dKS(xj ,xj′)

9: end for
10: {Cluster update}
11: for j = 1 to M do
12: if xj ∈ Ck′ and dKS(xj , ck) < dKS(xj , ck′)

then
13: Ck ← Ck ∪ {xj} and Ck′ ← Ck′ \ {xj}.
14: end if
15: end for
16: end while
17: Return {Ck}Kk=1

Theorem 3.1. Under Assumption (1), Algorithm 2 converges
after finite number of iterations and the error probability after
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T iterations is upper bounded by

Pe ≤ 2M(K2 + 3(T + 1)(K − 1)) exp
(
− nD2

KS

8

)
.

Sketch of Proof. Let Ct
l be the l-th cluster obtained at the t-th

(t > 0) iteration and ctl be the corresponding center. More-
over, let C0

l be the l-th cluster obtained at the initialization
step and c0l be the corresponding center. Then for t ≥ 1, we
have

K∑
l=1

∑
xj∈Ct−1

l

dKS(xj , c
t−1
l ) ≥

K∑
l=1

∑
xj∈Ct−1

l

dKS(xj , c
t
l),

K∑
l=1

∑
xj∈Ct−1

l

dKS(xj , c
t
l) ≥

K∑
l=1

∑
xj∈Ct

l

dKS(xj , c
t
l).

(3)
The equalities of (3) hold only if Ct−1

l = Ct
l for all l. There-

fore the algorithm converges in finite numbers of iterations.
Note that at each iteration, centers are incorrectly chosen

only if the clustering result is incorrect at the most recent step.
We first prove that the probability of error of Algorithm 1 is
exponentially consistent. Let Ek be the event that c0k is incor-
rectly chosen for k ≥ 2 while c0l for all l ∈ {1, . . . , k − 1}
are correctly chosen. Without loss of generality, assume that
c0l for l = 1, . . . , k − 1 are generated by p1, . . . , pk−1, re-
spectively. Then Ek is the event that the sequence with the
largest minimum KS distance to {c0l }

k−1
l=1 is actually gener-

ated by one of the distributions in {pl}k−1l=1 . By Lemma 2.1,
Lemma 2.3 and the union bound, the probability of error at
the initialization step is bounded as

P

(
∪Kk=1 Ek

)
≤ 2MK2 exp

(
− nD2

KS

8

)
. (4)

Let H0 be the event that the error occurs at the clustering ini-
tialization step while the center initialization is correct. Then

H0 ⊂ ∪Kl=1 ∪l′ 6=l ∪j : xj∼pl
{dKS(xj , c

0
l ) ≥ dKS(xj , c

0
l′) :

c0l ∼ pl, cl′ ∼ pl′}.

Then by the union bound and Lemma 2.2, we have

P (H0) ≤ 6M(K − 1) exp
(
− nD2

KS

8

)
. (5)

Let HT be the event that incorrect clustering occurs at the T -
th (T ≥ 1) cluster update step while clustering results at the
1, . . . , (T −1)-th steps are correct. Then P (Ht) has the same
upper bound as P (H0). Therefore, by (4), (5) and the union
bound, we have

Pe = P

((
∪Kk=1 Ek

)
∪
(
∪Tt=0 H

t
))

≤ 2M(K2 + 3(T + 1)(K − 1)) exp
(
− nD2

KS

8

)
.

4. UNKNOWN NUMBER OF CLUSTERS

Besides the error that could occur in Algorithm 2, it is pos-
sible that the number of distributions is incorrectly estimated
if the number of clusters is unknown. However, by Lemma
2.4, with high probability the two centers generated by the
same distribution are close to each other. This is the premise
of the clustering approach with unknown number of clusters,
in particular, the merging of cluster centers.

The proposed approach is summarized in Algorithms 3
and 4. There are two major differences between Algorithms
3 and 4 and Algorithms 1 and 2. First, the center initializa-
tion step keeps selecting centers until all the sequences are
close to the existing center. Second, an additional Merge Step
in Algorithm 4 helps to combine centers that have small KS
distances to each other.

Algorithm 3 KS-based initialization with unknown K

1: Input: {xj}Mj=1.

2: Output: Partition sets {Ck}K̂k=1.
3: {Center initialization}
4: Arbitrarily choose one xj1 as c1 and set K̂ = 1.
5: while maxxj

(
mini∈{1,...,K̂} dKS(xj , ci)

)
> DKS

2 do
6: cK̂+1 ← argmaxxj

(
mini∈{1,...,K̂} dKS(xj , ci)

)
7: K̂ ← K̂ + 1
8: end while
9: Cluster initialization specified in Algorithm 1.

10: Return {Ck}K̂k=1

Theorem 4.1. Under the assumption (1), the error probabil-
ity of Algorithm 3 and 4 is upper bounded by

Pe ≤
(
4M2(K + 1) + 6M(K − 1)(T + 1) + 4TK2

)
exp

(
− nD2

KS

8

)
.

Sketch of Proof. Note that the merge step only happens a fi-
nite number of times. Thus, convergence of the algorithm can
be proved in a way similar to the previous case.

Next we analyze the probability of error. An error occurs
at the center initialization step if and only if the following two
events which is denoted by G1 and G2 happen:

1. Initialization finds K1 centers that are drawn from K2

(< K) distributions, i.e. sequences generated by differ-
ent distributions are close to each other.

2. Initialization finds K3 (> K) centers that are drawn
from K distributions, i.e. sequences generated by the
same distribution have large KS distances.

By Lemmas 2.3 and 2.4, we have

P
(
G1 ∪G2

)
≤ 4M2(K + 1) exp

(
− nD8

KS

8

)
. (6)

Let Dt be the event that incorrect merges occur at the t-th
(t ≥ 1) merge step with correct clustering results before that.
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Algorithm 4 KS based clustering with unknown K

1: Input: {xj}Mj=1, number of clusters K̂.

2: Output: Partition set {Ck}K̂k=1.
3: Initialization: {Ck}K̂k=1 by Algorithm 3.
4: Method:
5: while not converge do
6: Center update step specified in Algorithm 2
7: {Merge Step}
8: for k1, k2 ∈ {1, . . . , K̂} and k1 6= k2 do
9: if dKS(ck1

, ck2
) ≤ DKS

2 then
10: if

∑
xj∈Ck1

dKS(ck2
,xj) <∑

xj∈Ck2
dKS(ck1 ,xj) then

11: Ck2
← Ck1

∪ Ck2
and delete ck1

and Ck1
.

12: else
13: Ck1

← Ck1
∪ Ck2

and delete ck2
and Ck2

.
14: end if
15: K̂ ← K̂ − 1.
16: end if
17: end for
18: Cluster update step specified in Algorithm 2.
19: end while
20: Return {Ck}K̂k=1

Then Dt is a subset of the event that sequences generated by
different distributions have KS distance no more than DKS

2 .
By Lemma 2.3, we have

P
(
DT
)
≤ 4K2 exp

(
− nD2

KS

8

)
. (7)

Moreover, Ht is a subset of the event that incorrect assign-
ments occur at the t-th (t ≥ 1) Assignment Step while the t-
th Merge Step provides correct centers. One can easily show
that P

(
∪Tt=0 H

t
)

has the same upper bound as (5). By (5) -
(7), we have

Pe ≤
(
4M2(K + 1) + 6M(T + 1)(K − 1) + 4TK2

)
exp

(
− nD2

KS

8

)
.

5. SIMULATION RESULT

In this section, we provide some simulation results. All the
sequences are generated by N (µi, 1) and N (0, σi), where
µi = i − 1 and σi = 2i−1 for i = 1, . . . , 5. Each distribu-
tion generates three sequences. Simulation results for known
and unknown number of clusters are shown in Figs. 1 and 2,
respectively. One can observe from the figures that for each
case log(Pe) is a linear function of the sample size, i.e. Pe is
exponentially consistent.

Furthermore, the comparison of theoretical error expo-
nents and simulated ones are summarized in Table 1. The
result shows that there is a gap between the theoretical results
and the empirical ones. However, this does not necessarily
mean that the theoretical lower bound of the error exponents
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Fig. 1: Performance of Algorithm 2

120 130 140 150 160 170 180
Sample size per sequence

-4

-3.5

-3

-2.5

-2

-1.5

lo
g(

P
e)

Simulated result given different means

(a) Guassian distributions with different means

500 550 600 650 700 750 800 850 900 950 1000
Sample size per sequence

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g(

P
e)

Simulated result given different variances

(b) Guassian distributions with different variances

Fig. 2: Performance of Algorithm 4

is always loose. Since the presented bounds work for arbitrary
distributions, there may exist some distributions for which the
empirical result is close to the bound.

Table 1: Comparison of the error exponents
different means different variances

theoretical result 0.0183 0.0032
Algorithm 2 0.0683 0.0234
Algorithm 4 0.0371 0.0055
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