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ABSTRACT

Clustering is widely used for exploratory data analysis in a variety of
applications. Traditionally clustering is studied as an unsupervised
task where no human inputs are provided. A recent trend in cluster-
ing is to leverage user provided side information to better infer the
clustering structure in data. In this paper, we propose a probabilis-
tic graphical model that allows user to provide as input the desired
cluster sizes, namely the cardinality constraints. Our model also in-
corporates a flexible mechanism to inject control of the crispness
of the clusters. Experiments on synthetic and real data demonstrate
the effectiveness of the proposed method in learning with cardinality
constraints in comparison with the current state-of-the-art.

1. INTRODUCTION

Clustering is an important task in machine learning, where the goal
is to group instances into clusters (categories). There are many prac-
tical applications of clustering such as image categorization, im-
age segmentation, document categorization, social network group-
ing, and bio-informatics. Numerous clustering algorithms have also
been proposed in the literature including K-means [1], spectral clus-
tering [2], density based clustering [3], hierarchical clustering [1]
and maximum margin based [4] approaches.

Traditionally, clustering is studied as an unsupervised task where
no human supervision is provided to define the categories. More re-
cently, it has been shown that clustering can be improved by consid-
ering various types of side information such as pair-wise constraints
specifying a pair of instances must or must not belong to the same
cluster [5] [6]. While a substantial body of literature exists on the
topic clustering with instance-level constraints, there has been lim-
ited work on clustering with constraints on a more global scale. In
particular, we are interested in clustering with constraints on the de-
sired cluster sizes, which we refer to as cardinality constraints.

Learning with label proportions has gained a momentum in re-
cent years, e.g., [7–10] since obtaining label proportions is cheaper
or more feasible than labeling samples. For example, a healthcare re-
port on the proportion of patients in each disease is available but indi-
vidual patient disease information is unavailable due to privacy [11].
Similarly, in political election data, the percent of supporters for each
candidate is available but not their individual votes [8]. In [7], black
carbon level estimation for individual particles is difficult with cur-
rent bioengineering techniques but estimating black carbon level of
a mass amount of particles aggregated over hours is feasible. In bird-
song data, there are a large number of unlabeled bird recordings and
the only available information is expert knowledge about the pro-
portion of each bird syllable [12] [13]. Size information can also
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be obtained before performing clustering in several domains such as
geoinformetric or document clustering [14].

In this paper, we introduce a discriminative graphical approach
for clustering with cardinality constraints, which allows users to ex-
plicitly specify the desired size or proportion of clusters. We further
introduce a novel Renyi-type entropy regularization to encourage
crisp clustering solutions. Treating the cluster labels as latent vari-
ables, we propose an expectation maximization algorithm for maxi-
mum likelihood estimation of the model parameters that uses exact
inference for two-class problems and an efficient Gaussian approx-
imation for multi-class clustering problems. Experiments on syn-
thetic and real data demonstrate that our method is highly competi-
tive in comparison to the current state-of-the-art, achieving superior
or comparable performance.

2. RELATED WORKS

Our proposed method builds a discriminative model for clustering.
There are several existing discriminative probabilistic frameworks
for clustering. In [15], conditional entropy is maximized, however,
this objective usually leads to small number of clusters. [16] avoids
that by proposing a posterior regularization with class balance. Due
to potentially large number of clusters, [17] proposes a regularization
technique to smooth out the boundary. Compared to [17], instead of
approximately minimizing the different of posterior distribution with
the class balance constraint, we directly force cardinality of each
clusters as an observation and exactly learn parameter satisfying the
cardinality constraint.

SVM-based approaches have also been considered for discrim-
inative clustering, e.g., maximum margin based clustering [18],
where the task is finding a labeling on the data such that assuming
this labeling, the margin learnt by SVM is maximized. There are
several variations of MMC, such as [19], [20], and [21]. Different
from them, we use a probabilistic approach with probability support.

Cluster sizes have been previously considered in the literature,
which mostly focused on acquiring balanced cluster sizes or heuristi-
cally dealing with unbalanced cluster sizes. In [22], a general frame-
work is proposed to make clustering algorithms produce balanced
clusters. Qian and Saligrama [23] changed the way of constructing
graph for spectral clustering by ranking nodes based on the density
level around it to deal with small size clusters. Size constraints have
also been considered by Zhu et al. where an approximate solution
is acquired using linear integer programming [14]. In contrast, our
work uses maximum likelihood estimation with exact inference for
two classes case to enforce cluster size constraints.

3. PROBLEM FORMULATION AND MODEL

Problem formulation. Consider a set of unlabeled data instances
denoted by X. Specifically, let X = [x1, x2, . . . , xn], where
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xi ∈ X ⊆ Rd is the ith instance. The unknown label (clus-
ter) of the ith instance xi is given by yi, for i = 1, 2, . . . , n,
where yi ∈ Y = {1, 2, . . . , C} and C is the number of clus-
ters. Let Nc denote the number of samples in the c-th cluster, i.e.,
Nc =

∑n
i=1 I[yi = c], where I[·] denotes the indicator function,

taking value 1 if its argument is true and 0 otherwise. As side in-
formation, we assume that the desired number of instances for each
cluster N = [N1, N2, . . . , NC ]T are provided. Our goal is to learn
a discriminative classifier that maps a sample in X to a label in Y
given the feature vectors X and N as inputs.
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Fig. 1. (a) The proposed discriminative clustering probabilistic
graphical model. Observed variables are shaded. (b) A graphi-
cal model for the disagreement indicator based on k independent
randomly generate labels from the same sample. (c) The value of
p(di = 1|xi,w) vs. p(ui = 1|xi,w) for different k values as com-
pared to the entropy function.

3.1. The proposed model

The proposed graphical model involves three key components,
namely, the hidden labels, the observed cluster cardinalities, and
the observed disagreement. We proceed with the description of the
aforementioned components.
Hidden cluster labels. The probability of the label yi of the ith
instance xi follows a multi-nomial logistic regression model:

p(yi = c|xi,w) =
ewT

c xi∑C
c=1 e

wT
c xi

, (1)

where wc ∈ Rd, for 1 ≤ c ≤ C, and w = [wT1 , . . . ,wTC ]T is
the classifier parameter vector. We assume that all instances xi for
i = 1, 2, . . . , n are i.i.d. given feature vectors and w.
Cluster cardinalities. As stated in the problem formulation,
we assume that number of instances in each cluster, i.e., N =
[N1, . . . , NC ] where Nc =

∑n
i=1 I[yi = c] are specified as part

of the input. Consequently, the probability model for the observed
cardinalities is deterministically given by

p(N|y) =

C∏
c=1

I[Nc =

n∑
i=1

I[yi = c] ], (2)

where y = [y1, y2, . . . , yn]. In other words, the cardinality Nc of
the cth cluster is equal to the total number of instances in the cluster,
for all c.
Cluster crispness via disagreement. To provide a control on how
well-separated and crisp the clusters should be, we introduce the no-
tion of disagreement as follows. For each instance xi, we consider
a disagreement indicator di ∈ {0, 1} that can be viewed as an in-
direct measure of the confidence of the predictions that model (1)
provides for instance xi. Specifically, given xi and w, k indepen-
dent labels u(1)

i , u(2)
i , . . . , u(k)

i are sampled according to the multi-
nomial logistic regression model in (1), as shown in Fig. 1(b). Then,
di is the indicator specifying that those k labels are not identical,
i.e., di = 1 − I[u(1)

i = u
(2)
i = · · · = u

(k)
i ]. The intuition is that

good clustering solutions will be well separated and hence the num-
ber of instances whose di = 1 should be small. The probability
p(di = 1|xi,w) can be obtained by marginalizing over u1, . . . , uk
as follows

p(di = 1|xi,w) = 1−
C∑
c=1

p(ui = c|xi,w)k = 1−
∑C
c=1 e

k×wT
c xi

(
∑C
c=1 e

wT
c xi)k

.

Consider the special case of k = 2 in a two-cluster setting. In
this scenario, p(di = 1|xi,w) = 1 − p(ui = 1|xi,w)2 − (1 −
p(ui = 1|xi,w))2. This probability is minimized when p(ui =
1|xi,w) = 0 or p(ui = 1|xi,w) = 1 (see Fig. 1(c)), i.e., the case
in which a classifier provides deterministic predictions of the label
for xi. In [24], a similar effect is achieved by entropy minimization,
i.e., by minimizing −

∑C
i=1 pi log pi + (1− pi) log(1− pi) where

pi = p(ui = 1|xi,w). A comparison between the entropy and the
probability p(di = 1|xi,w) as a function of p(ui = 1|xi,w) for
different values of k is shown in Fig. 1(c). Aggregating the disagree-
ments, we introduce a single binary variable I , which takes the value
1 when the total number of disagreements in the data is smaller than
a given pre-specified valuem ∈ {0, 1, 2, . . . , n} and zero otherwise:

p(I = 1|d) = I[
n∑
i=1

di ≤ m],

where d = [d1, d2, . . . , dn]. By requiring that I = 1 and varying
the tuning parameter m, we can control the amount of label dis-
agreement in the data, and hence the confidence and crispness of the
learned clusters.

The cluster crispness is designed for finding well separated clus-
ters whereas the cluster cardinalities is designed to avoid irregular
cluster solution that also has high cluster crispness, e.g., there are
only one big cluster and remaining clusters are empty. We propose to
solve the clustering problem using maximum likelihood estimation
on the aforementioned model to obtain w, which is consistent with
user-specified cluster cardinalities N and the disagreement count in-
dicator I = 1.

4. INFERENCE

Maximum likelihood is used to infer model parameters. The log-
likelihood of the model is log p(I,N,X|w) = log p(I,N|X,w) +
log p(X|w). Since the probability model for X is independent of w,
maximizing the log-likelihood is achieved by maximizing the condi-
tional log-likelihood L(w) = log p(I,N|X,w). To address the chal-
lenges in the direct maximization of the log-likelihood, we consider
the Expectation Maximization approach [25]. The EM auxiliary
function is given by Q(w,w′) = Ey,u|I,N,w′ log p(I,N, y, u|X,w),
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(1)
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1 , . . . , u

(k)
1 , . . . , u

(1)
n , u

(2)
n , . . . , u

(k)
n ] are

the hidden variables and I and N are the observations. Variable d
is not considered as hidden since d can be deterministically com-
puted from u. To compute Q, we begin by deriving the complete
log-likelihood

Lc(w) = log p(I,N, y, u|X,w) (3)
= log p(N|y) + log p(y|X,w) + log p(I|u) + log p(u|X,w).

Consequently, the auxiliary function can be derived based on the
complete log-likelihood as

Q(w,w′) = Ey,u|I,N,w′
[
Lc(w)

]
(4)

= ζ +

n∑
i=1

[
[

C∑
c=1

p(yi = c|N,X,w′)wTc xi − log(

C∑
c=1

ewT
c xi)]

+ k × [

C∑
c=1

p(ui = c|I,X,w′)wTc xi − log(

C∑
c=1

ewT
c xi)]

]
,

where ζ is a constant w.r.t. w. We use generalized EM [25] in which
the maximization of the auxiliary function Q(w,w′) w.r.t. w is re-
placed by an increase of Q(w,w′) w.r.t. w. Consequently, the EM
iteration is given by the following two steps:
E-step: Compute p(yi = c|N,X,w(h)) and p(ui = c|I,X,w(h)),
for 1 ≤ i ≤ n, 1 ≤ c ≤ C.
M-step: Find w(h+1) s.t. Q(w(h+1),w(h)) ≥ Q(w(h),w(h)) where
h is the current EM iteration.

4.1. E-step

In this section, we present methods to compute the probabilities in
the E-step.

4.1.1. Computing p(ui = c|I,X,w′) using dynamic programming

Let Dh and D\i be the total number of disagreements in the
first h samples and the total number of disagreements exclud-
ing the ith sample, respectively, such that Dh =

∑h
j=1 dj and

D\i =
∑n
j=16=i dj = Dn − di. Using the Dh’s we form a chain

model that allows for an efficient computation of the probability
p(ui = c|I,X,w′) using the following procedure. These steps are
illustrated in Fig. 2.
Step 1. Initialize p(D1 = a|X,w′) = p(d1 = a|x1,w′) for a ∈
{0, 1}, and p(d1 = a|X,w′) = 0 for a > 1. Intuitively, the step
initializes the probability of disagreement at the first instance.
Step 2. Dynamically compute p(Dh+1|X,w′) as in Fig. 2(b):
p(Dh+1 = a|X,w′) = p(dh+1 = 0|xh+1,w′)p(Dh = a|X,w′) +
p(dh+1 = 1|xh+1,w′)p(Dh = a − 1|X,w′), for 0 ≤ a ≤ m and
0 ≤ h ≤ n − 1. Intuitively, if there are a disagreements among
the first h + 1 instances, then there are two possibilities that there

are a or a − 1 disagreements among the first h instances since the
disagreement at the (h+1)th instance is a binary value.
Step 3. Compute p(D\i|X,w′) using the forward and substitution
method, as in Fig. 2(c), as follows

p(D\i = 0|X,w′) =
p(D = 0|X,w′)
p(di = 0|xk,w′)

,

p(D\i = a+ 1|X,w′) =
p(D = a+ 1|X,w′)
p(di = 0|xi,w′)

− p(di = 1|xi,w′)p(D\i = a|X,w′)
p(di = 0|xi,w′)

, (5)

for 0 ≤ a ≤ m − 1 and 0 ≤ i ≤ n. Intuitively, the distribution
of the number of disagreements among all instances except the ith
instance can be computed from that distribution among all instances.
Step 4. Compute p(D\i ≤ m|X,w′) =

∑
0≤a≤m p(D

\i =

a|X,w′).
Step 5. Finally, compute p(ui = c|I = 1,X,w′), as in Fig. 2(d),
using conditional rule

p(ui = c|I = 1, xi,w′) = p(ui = c|D ≤ m, xi,w′)

=
p(ui = c,D ≤ m|X,w′)∑C
c=1 p(ui = c,D ≤ m|X,w′)

, (6)

where p(ui = c,D ≤ m|X,w′)=p(ui = c|xk,w′)
[
p(ui =

c|xk,w′)k−1p(D\i ≤ m|X,w′)+(1−p(ui = c|xk,w′))k−1p(D\i ≤
m − 1|X,w′)

]
. The computational complexity for computing

p(ui = c|I,X,w′) is O(mn). This can be obtained from the fact
that state probabilities are computed for n instances and each state
takes m+ 1 values.

4.1.2. Computing p(yi = c|N,X,w′) using Gaussian approxima-
tion

In this section, first, we present the dynamic programming method to
compute p(yi = c|N,X,w′) and its computational challenge. Then,
we show how to overcome that challenge using Gaussian approxi-
mation.

Denote Nh = [Nh
1 , N

h
2 , . . . , N

h
C ], N\i = [N

\i
1 , N

\i
2 , . . . , N

\i
C ]

as the number of samples in each cluster from the first to the kth
sample and the number of samples in each cluster excluding the
ith sample, i.e., N\ic =

∑n
j=16=i I[yj = c], respectively. The

probability p(yi = c|N,X,w′) is computed using the conditional
probability definition p(yi = c|N,X,w′) = p(yi=c,N|X,w′)∑C

l=1
p(yi=l,N|X,w′)

,

where p(yi = c,N|X,w′) is computed by marginalizing p(yi =

c,N = v|X,w′) = p(yi = c|xi,w′)p(N\i = v − ec|X,w′)] where
ec ∈ {0, 1}C is the canonical vector such that ec(j) = 1 for j = c
and zero otherwise.

A dynamic programming approach to compute p(N\i|X,w′). The
probability p(N\i = v − ec|X,w′) is computed using the dynamic
programming process as follows.
Step 1. Initialize p(N1 = v|X,w′) from p(y1|x1,w′) as follows

p(N1 = v|X,w′) =

{
p(y1 = c|x1,w′) if v = ec.
0 otherwise,

(7)

Step 2. Dynamically compute p(N|X,w′) using p(N(h+1) =

v|X,w′) =
∑C
c=1 p(yh+1 = c|xh+1,w′)p(Nh = v − ec|X,w′).

Note that v ∈ ZC and 0 ≤ vj ≤ h+ 1, ∀1 ≤ j ≤ C.
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Step 3. Compute p(N\i|X,w′) using the forward and substitution
method in the C-dimensional space similar to (5).

The computational complexity for computing Step 2 is O(nC).
When the number of clusters C is large, the aforementioned exact
approach for computing p(yi = c|N,X,w′) is computationally pro-
hibitive. To address this problem, we present an alternative approach
using the following Gaussian approximation computation.

A Gaussian approximation approach to compute p(N\i|X,w′).
Following the central limit theorem, since N\i =

∑n
j=16=i vj with

vj = [I[yj = 1], I[yj = 2], . . . , I[yj = C]]T and vj’s are inde-
pendent with finite variance, N\i is asymptotically Gaussian for suf-
ficiently large n [26]. For each jth instance, define µj ∈ RC and
Σj ∈ RC×C as µj(r) = p(yj = r|xj ,w′) and Σj(r, s) = I[r =
s]p(yj = r|xj ,w′)− p(yj = r|xj ,w′)p(yj = s|xj ,w′), where 1 ≤
r, s ≤ C. We approximate N\i as Gaussian: N (µ\i,Σ\i) where
µ\i =

∑
j=16=i µj and Σ\i =

∑
j=16=i Σj and therefore p(N\i =

N|X,w′) =2π−
C
2 |Σ\i|−

1
2 e−

1
2

(N−µ\i)T (Σ\i)−1(N−µ\i). The com-
putational complexity using Gaussian approximation is O(nC).

4.2. M-step

We use gradient ascent with backtracking line-search [27] in M-

step. Specifically, w(h+1) = w(h) + η ∂Q(w,w(h))
∂w

∣∣∣∣
w=w(h)

, where the

gradient is computed as
∑n
i=1 xi[p(yi = c|N,X,w(h)) − p(yi =

c|xi,w)]+
∑n
i=1 k × xi[p(ui = c|I,X,w(h))− p(yi = c|xi,w)].

5. EXPERIMENTS

In this section, we evaluate the performance of the proposed al-
gorithm DCCC, and compare with several clustering algorithms
including K-mean, Maximum Margin Clustering (MMC), and
discriminative clustering with Regularization Information Maxi-
mization (RIM). As mentioned in Section 1, we assume the size
constraints N is known for every dataset. Note that both the pro-
posed DCCC method and RIM benefit the size constraints as input.
We use normalized mutual information NMI as the evaluation met-
ric [28] [29] [30].

5.1. Experiments on MNIST handwritten dataset

Datasets and setting. We generate five datasets, each containing
two classes of digits: 12, . . . , 78, and 90. Each dataset contains
200 digits generated uniformly from two classes. Because the digits
in the MNIST datasets are reasonably well separated, for this set of
experiments we set the disagreement parameter m = 0. We use L2

regularization for the proposed algorithm with parameter λ selected
in {10, 20, 50, 100, . . . , 103}. We compare DCCC with RIM, K-
means, and MMC. Specifically, the parameter λ for RIM is searched
over the set {10, 20, 50, 100, . . . , 103}. The parameter ` for MMC
is searched over the set {0.01, 0.02, 0.04, 0.1, 0.2, 0.4} and C is set
to 0.001. For each parameter setting, each algorithm is initialized
10 times and the model that yields the optimal value of the objec-
tive is selected and its performance reported. Finally, the parameters
are selected post-hoc to maximize the performance. We perform ex-
periments on both implementations of DCCC: using exact dynamic
programming computation with O(n2) time complexity and using
Gaussian approximation with O(n) time complexity.
Results and analysis. The NMI results are presented in Table 1.
In comparison to RIM, we observe that DCCC achieves compara-
ble or superior performance for most of the datasets. This may be

Datasets 1 2 3 4 5 6 7 8 9 0
DCCC-D 0.70 0.93 0.72 0.89 0.93
DCCC-G 0.70 0.93 0.72 0.89 0.93
RIM 0.73 0.89 0.69 0.88 0.93
MMC 0.64 0.81 0.71 0.76 0.90
Kmeans 0.46 0.81 0.56 0.79 0.81

Table 1. NMI results of DCCC, RIM, MMC, and K-means on
MNIST datasets.

Datasets HJA bird song MSCV2 Voc12
DCCC-G 0.40 0.31 0.12
RIM 0.39 0.25 0.11
K-means 0.06 0.13 0.02

Table 2. NMI results of DCCC, RIM, and K-means on real datasets.

due to the fact that exact inference is used in our algorithm to in-
crease the likelihood at each step, whereas RIM uses approximations
in maximizing the likelihood and regularization with the reference
distribution. The performance of the implementation for DCCC us-
ing Gaussian approximation DCCC-Gaussian (DCCC-G, for short)
is similar to that of the exact implementation using dynamic pro-
gramming DCCC-Dynamic (DCCC-D, for short). This may be due
to the fact that there are large number of samples making the ap-
proximate distribution close to the exact distribution, based on the
central limit theorem [26]. Compared to DCCC and RIM, the results
of K-means and MMC are often considerably lower.

5.2. Experiments on bird song and image annotation datasets

Datasets and setting. We consider three real-world multi-class
datasets including HJA bird song (13-class), MSCV2 image annota-
tion (19-class), and Voc12 (20-class) [13] [31]. For these datasets,
we uniformly select 400 samples for training and use the remaining
samples as a validation set for parameter tuning. In particular, we
use the log-likelihood on the validation set to select the parameter
for our model and use the objective value on the validation set for
tuning the parameter for RIM. Since the number of classes C is
large, Gaussian implementation is used for DCCC. For the pro-
posed method, m, λ, and k are selected from the set {10, ..., 50},
{0.1, 1, 10, 100, 1000}, and {2, 3}, respectively. For the regular-
ization parameter of the RIM parameter, we use the same selection
range as used for the MNIST data. We use the true class proportion
to specify the cluster sizes for our method and the reference distri-
bution for RIM. Since MMC is designed for two classes problem,
we skip this algorithm.
Results and analysis. The NMI results are presented in Tables 2.
We observe that the performance of DCCC is significantly higher
than that of RIM on MSCV2 dataset, and a little higher on HJA and
Voc12 datasets.

6. CONCLUSION
In this paper, we proposed a discriminative graphical model for clus-
tering with cluster size constraints. The framework achieves cluster
crispness and the desired class proportion using the maximum like-
lihood approach via EM. To overcome the computational challenge
in the E-step, we introduce a novel Gaussian approximation. Ex-
periments on real datasets demonstrated that our method is highly
competitive compared to the current state-of-the-art methods.
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