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ABSTRACT

Multiple-instance learning is a framework for learning from data
consisting of bags of instances labeled at the bag level. A common
assumption in multi-instance learning is that a bag label is positive if
and only if at least one instance in the bag is positive. In practice, this
assumption may be violated. For example, experts may provide a
noisy label to a bag consisting of many instances, to reduce labeling
time. Here, we consider generalized multi-instance learning, which
assumes that the bag label is non-deterministically determined based
on the number of positive instances in the bag. The challenge in
this setting is to simultaneous learn an instance classifier and the un-
known bag-labeling probabilistic rule. This paper addresses the gen-
eralized multi-instance learning using a discriminative probabilistic
graphical model with exact and efficient inference. Experiments on
both synthetic and real data illustrate the effectiveness of the pro-
posed method relative to other methods including those that follow
the traditional multiple-instance learning assumption.

Index Terms— Multi-instance learning, graphical model,
expectation-maximization, dynamic programming

1. INTRODUCTION

Multiple-instance learning (MIL) is a framework for learning with
label ambiguity. In MIL, the objects of interest are referred to as
bags and each bag consists of one or more parts called instances.
Instances can be either positive or negative. If all instances from a
bag are negative, the bag is labeled as negative. Otherwise, if at least
one instance in the bag is positive, the bag is labeled as positive. This
setting is referred to as the presence-based assumption [1]. Multiple-
instance learning has many applications, e.g., in image processing
[2], drug activity prediction [3], bird song species prediction [4],
document categorization [5], and activity recognition [6].

In practice, the labeling process is often noisy and imprecise,
violating the presence-based assumption. For example, experts may
only label a bag as positive if they feel that sufficient number positive
instances are present in the bag. This setting is referred to as gener-
alized multi-instance learning [7]. For example, an image is labeled
as ‘forest’ if and only if it contains more than ten ‘tree’ segments.

The classical MIL framework, presents two type of classifica-
tion problems: (i) instance level prediction and (ii) bag level pre-
diction. The presence-based assumption provides a framework to
derive a bag level classification rule based on the learned instance
level classifier. Generalized multi-instance learning presents an ad-
ditional challenge because the relation between the bag label and
instance labels is unknown and must be learned in addition to the
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instance level classifier. In this paper, we propose a discriminative
probabilistic graphical model for generalized multi-instance learn-
ing. Our contributions are as follows. We introduce a probabilistic
model that relates the bag label to the number of positive instance
in the bag and derive an Expectation-Maximization update rule to
facilitate parameter estimation of the proposed model. We demon-
strate that the instance level classifier learning and the bag labeling
rule learning can be solved separately in each iteration. Experiments
on real and synthetic data illustrate the effectiveness of the proposed
solution in comparison to the current state-of-the-art for generalized
MIL, and methods that follows the presence-based assumption.

2. RELATED WORK

Generalized multi-instance learning has been considered using two-
level classification (TLC) scheme [1]. In TLC, authors consider
three different assumptions in MIL: the presence assumption, the
threshold assumption, and the count assumption where each repre-
sents a different rule for generating the bag label based on instance
labels. Specifically, these assumptions are the bag is labeled posi-
tive if the number of instances in considered concepts is greater than
one, greater than an unknown threshold, or in a range, respectively.
A two-level decision tree is used to find the solution. Another line
of work is constructive clustering ensemble (CCE) multi-instance
learning [8]. In CCE, instances are first groups into clusters. Then,
bags are featured by the number of instances in these clusters. Sup-
port Vector Machine (SVM) is used to learn the relation among bag
features and bag labels.

Another line of research named generalized multi-instance
learning is in [9] and [10]. Specifically, k concept points are defined
and a bag is positive if there are r out of k concept points such that
for each of these concept points, there is at least one instance in the
bag close to it. [11] considers the use of cardinality potentials for
MIL by defining potential function between instance labels, instance
features, and bag labels then solves using an SVM approach which is
used frequently for MIL. In contrast, the proposed framework uses a
probabilistic graphical model approach with logistic relation among
instance labels, instance features, and bag labels. Note that proba-
bilistic graphical models with exact inference often achieve higher
accuracy than SVM-based approaches in multi-instance multi-label
setting [12] [13].

3. PROBLEM FORMULATION AND MODEL

Data in MIL is modeled as {X,Y} = {Xb, Yb}Bb=1 where B indi-
cates the number of bags. We denote the bth bag of instance feature
vectors by Xb = {xb1, xb2, . . . , xbnb} where xbi ∈ X = Rd denotes
the ith instance feature and d is the number of features. The bag
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Fig. 1. (a) The proposed graphical model Soft OR Logistic Re-
gression SORLR for the bth bag. Observed nodes are shaded.
(b) Graphical model to compute instance membership probability
p(ybi = 1|Yb,Xb,w′, v′) and probability of the number of positive
instances p(Nb = n|Yb,Xb,w′, v′).

label is denoted as Yb ∈ {0, 1} in which 0 and 1 represent negative
and positive labels, respectively. Hidden instance labels are denoted
as yb = {yb1, yb2, . . . , ybnb}. Our goal is twofold: (i) we would
like to find a bag label classifier g : 2X → {0, 1} based on training
data of the form {X,Y} and (ii) we would like to find an instance
level classifier g : X → {0, 1} based on training data of the form
{X,Y}. The focus in this paper is to achieve the two goals under the
assumption of generalized MIL setting.

3.1. Proposed model

We assume that the B bags in our training data X1, . . . ,XB are
independent. The graphical model for the bth bag is presented in
Fig. 1(a). We introduce a discriminative probability model that re-
lates instance feature vectors to the corresponding instance labels
using an instance level classifier followed by a bag labeler relating
the bag level label to set of instance level labels.

The instance level classifier. We assume that instance level la-
bels are generated independently given the collection of instance
level features: p(yb1, . . . , ybnb |Xb) =

∏B
i=1 p(ybi|Xb) and that in-

stance labels depend on Xb through their corresponding feature vec-
tor, i.e., p(ybi|Xb) = p(ybi|xbi). Additionally, the relation between
the instance label ybi ∈ {0, 1} and instance feature xbi is modeled
using logistic regression function as follows

p(ybi = 1|xbi,w) =
ewT xbi

1 + ewT xbi
, (1)

where w ∈ Rd is the instance level classifier parameter.
The bag labeler. To produce a bag level label Yb given the col-

lection of instance level labels {yb1, . . . , ybi} we assume a cardinal-
ity based model. In this approach, the key assumption is that the
bag label is related to the instance labels through the number of pos-
itively labeled instances. The number of positive instances in the bth
bag denoted by Nb is modeled according to

p(Nb = n|yb) = I
[ nb∑
i=1

ybi = n
]
, (2)

where I[·] is the indicator function taking the value of one for true
argument and zero otherwise. The relation between the bag label
Yb ∈ {0, 1} and the number of positive instances Nb is modeled as
follows

p(Yb = 1|Nb = n, v) = φ(n; v), (3)

where v is the bag labeler parameter vector and φ : {0} ∪ Z+ ×
Rdim(v) → [0, 1]. We consider three cases for the function:
Case 1©:

φ(n; v) =

{
vn if n = 0, 1, . . . ,m,

vm if n > m.
(4)

where v = [v0, v1, . . . , vm] ∈ Rm+1 is an unknown bag labeler pa-
rameter vector withm is the maximum training bag size. This model
assigns bag label probability for each possible value of the number
of positive instances in an independent fashion. Note that the model
can be restricted to enforce monotonicity on the vn coefficients such
that 0 ≤ v1 ≤ v2 ≤ . . . , vm.
Case 2©:

φ(n; v) = ev0+n×v1

1 + ev0+n×v1
, (5)

where v = [v0, v1] ∈ R2 is an unknown bag labeler parameter vec-
tor. The model follows a logistic regression model with an input
vector of [1, n]. This model guarantees the monotonicity of the bag
label probability as a function of the number of positive instances.
With v1 > 0, the probability of positively labeling a bag increase
with the number of positive instance labels.
Case 3©:

φ(n; v) = I[n ≥ v0], (6)

where v = [v0] ∈ R1 is an unknown bag labeler parameter. This
model offers a deterministic assignment of a positive label to a bag
if the number of positive instances in the bag is greater or equal v0.
If v0 = 1, the setting of this case is similar to that of multi-instance
learning.

Three models are ordered by the flexibility level. The first model
allows arbitrary relation among number of positive instances and bag
label. The second model enforces monotonic constraint. The last
model is a threshold model. If the labelers are very sure that the bag
label is positive if there are at least three positive instances, then, the
third model is the most suitable model.

Based on the aforementioned general model, our original goal in
the beginning of this section translate to learning the instance classi-
fier parameter w vector and the bag labeler parameter vector v.

4. INFERENCE FOR THE PROPOSED MODEL

We consider a maximum likelihood approach for the inference of the
aforementioned model parameters given training data {X,Y}. The
likelihood p(Y,X|w, v) is computed using p(Y,X|w, v)
= p(Y|X,w, v)p(X) since P (X) is independent of w and v.
Consequently, the likelihood can be maximized by maximizing
p(Y|X,w, v). Following the independence assumption among bags
and marginalizing over the number of positive instances Nb and
instance labels yb in each bag, the log-likelihood L(Y|X,w, v) is
computed as

∑B
b=1 log[

∑nb
Nb=0

∑
yb⊂Mb

p(Yb, Nb, yb|Xb,w, v)],
where Mb ∈ {0, 1}nb is the set of all possible instance labels yb for
the bth bag. To the best of our knowledge, no closed-form solution
is available for the maximization of L(Y|X,w, v). Consequently,
we proceed with the Expectation Maximization framework [14] for
implementing maximum likelihood estimation.

4.1. Expectation maximization for generalized multi-instance
learning

We consider the training data {X,Y} as the observed data and the
positive instance counts and instance labels {ND, yD} where ND =
{Nb}Bb=1 and yD = {yb}

B
b=1 as the hidden data. Consequently, the
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complete data ia given by {X,Y,ND, yD}. The conditional version
of the complete data log-likelihood follows

L(Y,ND, yD|X,w, v) (7)

=

B∑
b=1

[ nb∑
i=1

(
I[ybi = 1]wT xbi − log(1 + ewT xbi)

)
+

nb∑
n=0

I[Nb = n]
(
log p(Yb|Nb = n, v) + log p(Nb = n|yb)

)]
.

Taking the expectation of the complete log-likelihood w.r.t. ND and
yD given Y,X,w′, v′ and noting that the expectation of the second
term is independent of w and v, we obtain the surrogate for log-
likelihood, i.e., the auxiliary function, as follows

Q(w, v;w′, v′) = Q1(w;w′, v′) +Q2(v;w′, v′) (8)

whereQ1(w;w′, v′) =
∑B
b=1

∑nb
i=1[p(ybi = 1|Yb,Xb,w′, v′)wT xbi-

log(1 + ewT xbi)], and Q2(v;w′, v′) =
∑B
b=1

∑nb
n=0 p(Nb =

n|Yb,Xb,w′, v′)
(
Yb log φ(n; v)+ (1−Yb) log(1−φ(n; v))

)
. The

premise of EM, is that by using the update rule [wk+1,vk+1] =
argmaxw,vQ(w, v;wk, vk) where Q is given by (8), a series of
non-decreasing incomplete data log-likelihood values can be ob-
tained. Based on the auxiliary function in (8), the expectation
maximization update procedure is
E-step:
• Compute instance label probability
p(ybi = 1|Yb,Xb,w′, v′), ∀1 ≤ i ≤ nb

• Compute the number of positive instances probability
p(Nb = n|Yb,Xb,w′, v′), ∀0 ≤ n ≤ nb.

M-step:
• Estimate the instance label classifier parameter w using

maxwQ1(w;w′, v′)
• Estimate the bag labeler parameter v using

maxvQ2(v;w′, v′).

4.2. E-step

Our goal in the E-step is to compute p(ybi = 1|Yb,Xb,w′, v′)
and p(Nb = n|Yb,Xb,w′, v′). Brute-force computations require
marginalizing over hidden variables yb1, . . . , ybnb with the cost
of O(2nb). To address this problem, we propose a reformula-
tion of the graphical model as a chain. Additionally, we present
a forward-backward message passing algorithm that allows for a
O(n2

b) computation of the aforementioned probabilities.
Assume an order of instances in the bth bag. Denote the total

number of positive instances from the 1st to the ith instance by nbi:
nbi =

∑i
j=1 ybj . The new variable nbi admits a chain structure

due to the recursion nb(i+1) = nbi + yb(i+1), which is initialized
with nb1 = yb1. Following the new notation, the number of posi-
tive instances in a bag Nb satisfies Nb = nnnb . We adapt the tech-
nique in [15] of converting a tree to a chain structure to our particular
case. We then derive the forward and backward method to compute
p(ybi = 1|Yb,Xb,w′, v′) and p(Nb = n|Yb,Xb,w′, v′) as follows.

1. The forward message. Define αi(k) , p(nbi = k|Xb,w′).
Then, αi+1(k) is computed forwardly for i = 1, 2, . . . , nb − 1 as
follows

αi+1(k) = p(yb(i+1) = 1|xb(i+1),w′)αi(k − 1)

+ p(yb(i+1) = 0|xb(i+1),w′)αi(k). (9)

2. The backward message. Define βi(k) , p(Yb|nbi =
k,Xb,w′). Then, βi(k) is computed backwardly for i = nb −
1, . . . , 2, 1 as follows

βi(k) = p(yb(i+1) = 1|xb(i+1),w′)βi+1(k + 1)

+ p(yb(i+1) = 0|xb(i+1),w′)βi+1(k). (10)

3. The first required E-step probability p(ybi = 1|Yb,Xb,w′, v′)
can be computed from α and β as follows

p(ybi = 1|Yb,Xb,w′, v′) =
π1

π1 + π0
, (11)

where π1 =
∑nb
k=0 αi−1(k)βi(k + 1)p(ybi = 1|xbi,w′) and π0 =∑nb

k=0 αi−1(k)βi(k)p(ybi = 0|xbi,w′).
4. The second required E-step probability p(nbi = n|Yb,Xb,w′, v′)

can be computed from α and β as follows

p(nbi = n|Yb,Xb,w′, v′) =
αi(n)βi(n)∑nb
k=0 αi(k)βi(k)

. (12)

Setting i = nb in (12), we obtain p(Nb = n|Yb,Xb,w′, v′).
The E-step computation requires traversing the graphical model in
Fig. 1(b) back and forth in O(nb) steps. The number of values each
of the states nbi takes is O(nb) and each term computation is O(1).
Hence, the computational complexity of the E-step for the bth bag
is O(n2

b). The detailed derivations of the update rules for αi(k),
βi(k), and computation of p(ybi = 1|Yb,Xb,w′, v′) and p(Nb =
n|Yb,Xb,w′, v′) are provided in the supplementary material [16].

4.3. M-step

Recall the auxiliary function from (8). Since the objective function
is separable in w and v, we derive the optimization process for them
separately. Denote θ′ = [w′, v′].

Instance level classifier update. We apply Newton method with
backtracking line search [17] to update w in order to solve the min-

imization of Q1: w(k+1) = w(k) − η × H−1
w dw

∣∣∣∣
w=w(k)

, where

the gradient dw =
∑B
b=1

∑nb
i=1[p(ybi = 1|Yb,Xb, θ′) -p(ybi =

1|xbi,w)]xbi, and the Hessian Hw = −
∑B
b=1

∑nb
i=1 p(ybi =

1|xbi,w)p(ybi = 0|xbi,w)xbixTbi.

Bag labeler update. In the following, we present the update rule for
v for the three bag labeler models.

Case 1©, when p(Yb = 1|Nb = n, v) is modeled by (4), then
by setting the gradient of Q2 to 0, vn can be computed as vn =
δn

δn+τn
, where δn =

∑B
b=1 Ybp(Nb = n|Yb = 1,Xb, θ′) and τn =∑B

b=1(1− Yb)p(Nb = n|Yb = 0,Xb, θ′).
Case 2©, we use Newton method with backtracking line search

for updating v. Specifically, v(k+1) = v(k) − η × H−1
v dv

∣∣∣∣
v=v(k)

,

where the gradient is given by dv =
∑B
b=1

∑nb
n=0 ρ1(b, n)[n 1]T ,

where ρ1(b, n) = [Yb−p(Yb = 1|Nb = n, v)]p(Nb = n|Yb,Xb, θ′)
and the Hessian is Hv =

∑B
b=1

∑nb
n=0 ρ2(b, n)(−1)[1 n]T [1 n],

where ρ2(b, n) = p(Yb = 1|Nb = n, v) × p(Yb = 0|Nb =
n, v)p(Nb = n|Yb,Xb, θ′).

Case 3©, v = [v0] is found by minv0
∑B
b=1

[
Ybp(Nb <

v0|Yb = 1,Xb, θ′)+(1−Yb)p(Nb ≥ v0|Yb = 0,Xb, θ′)
]
. Note that

the search over v0 can be restricted to the set {0, 1, . . . , nmax + 1},
where nmax = maxBb=1 nb.
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4.4. Prediction

Instance label prediction: the label for the ith instance in the tth
test bag is predicted as ŷti = I[wT xbi > 0]. Bag label prediction:
the label for the tth test bag is predicted as p(Yt = 1|Xt,w, v) =∑nt
n=0 p(Yt = 1, Nnt = n|Xt,w, v) =

∑nt
n=0 φ(n; v)αnt(n),

where αnt(n) is computed using the forward approach. The pre-
dicted bag label is 1 if p(Yt = 1|Xt,w, v) ≥ 0.5.

5. EXPERIMENTS

Setting. We compare three different versions of the proposed
method Soft ORed Logistic Regression SORLR1-3 corresponding
to the three aforementioned cases with MIML-NC [12], a multi-
instance multi-label learning algorithm. MIML-NC is considered
as a baseline algorithm for two reasons. First, it is a discriminative
graphical model that has been shown to outperform SVM-based
methods [12]. Second, the setting of MIML-NC is similar to the
MIL setting. MIML-NC works in multi-instance multi-label setting
(MIML), a general setting for multi-instance learning (MIL), and
can deal with novel class. Specifically, if a bag has novel class
instances, the novel class is removed from the bag label. Similarly
in MIL, for bags with several negative instances and at least one
positive instance, the negative label is removed from the bag label.
MIML-NC facilitates EM framework to learn an instance level clas-
sifier for both known classes and novel class. We further consider
an additional setting of the proposed method for case 3, which is
called ORed Logistic Regression ORLR, where v0 is fixed at 1.
We expect this method to perform similarly as MIML-NC. We also
compared the proposed method with CCE [8]. In CCE, instances
are group into clusters. Bags are featurized using presence or count
of is instances in each cluster and an SVM classifier is used to learn
from bags. We consider CCE1, which is based on the presence
assumption and CCE2, which uses the count assumption. Note that
while CCE separates the clustering instances process with the learn-
ing the bag-clusters relation process, SORLR combines two steps
into a single probabilistic framework. Since CCE is an SVM-based
approach, we use the RBF kernel with parameter γ searched in
the set {0.001, 0.01, 0.1, . . . , 1000} and C searched over the set of
{0.001, 0.01, 0.1, . . . , 1000}. The kernel version of SORLR1-3 and
MIML-NC is implemented based on the random Fourier transform
technique as in [18] with the RBF kernel width is selected post-hoc
in the set {0.01, 0.02, 0.05, 0.1, 0.2, . . . , 5, 10}. We also consider
logistic regression trained under the single instance single label
(SISL) setting where the instance labels are known. Since instance
labels are provided in the SISL setting, we expect the LR model
trained in this setting to outperform other methods. Additionally, we
consider a Dummy classifier. For every instance, the Dummy classi-
fier predicts the label of the most frequent class in the training data.
The Dummy classifier is expected to be outperformed by methods
that consider the instance features in prediction.

Evaluation metrics. We consider instance-level prediction ac-
curacy and bag-level prediction accuracy, which is the ratio between
the correctly predicted and the total number of bags, as measures
for all algorithms. Note that CCE methods are designed to make
bag-level predictions. To generate instance-level prediction, we use
CCE1 and CCE2 to train bag-level classifiers and then simply create
a bag for each instance at testing stage to make prediction.

Datasets. We consider the following MIML datasets: HJA bird
song and MSCV2 image annotation [4] datasets. We form two-class
datasets by considering several classes as positive and the remaining
classes as negative. Specifically, classes 1 − 5 and 1 − 6 in HJA
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Fig. 2. Instance-level accuracy (left) and bag-level accuracy (right)
as a function of the threshold t of the proposed models (SORLR1-3)
and baseline methods.

and MSCV2, respectively, are chosen as positive while keeping the
resulting datasets balanced. Each bag is labeled positive if it has no
less than t positive instances where t is varied from 1 to 19 with step
size of 2 for HJA, and from 1 to 10 for MSCV2 due to its smaller
average bag size.

Results and analysis. From Fig. 2, we first note that the three
methods that are based on the presence assumption, namely ORLR,
MIML-NC, and CCE1, performed consistently worse than other
methods as we increase the threshold t. In fact, as t increases, their
performance eventually approaches the performance of the Dummy
classifier. This is consistent with our expectation because these
methods do not correctly model the bag labeler. CCE2, the current
state-of-the-art method that considers the concept count, performs
very competitively for the bag-level accuracy. However, when con-
sidering the instance-level prediction accuracy, CCE2 is generally
inferior to the proposed methods (SORLR1-3). For example, if
the threshold is 7, the accuracy of SORLR3 is 9% and 6% higher
than those of CCE2 on MSCV2 and HJA, respectively. When the
threshold increases a little, the presence assumption for algorithms is
violated. Therefore, both bag and instance level accuracy decrease.
However, when the threshold becomes very big, all training bags
and test bags are negative. Hence, for most classifiers, all instances
in spaces are learnt to be negative. Thus, the instance accuracy de-
creases. However, test bags are negative leading to the bag accuracy
is remaining high. SORLR2 and SORLR3 are quite consistent in
term of performance whereas SORLR1 may have overfitting prob-
lem, especially in HJA where a large number of parameters are used
in vector v.

6. CONCLUSION

This paper considered generalized multi-instance learning in which
the bag label depends on the number of positive instances. We pre-
sented a discriminative graphical model taking into account both
the instance level classifier and the bag labeler model. An efficient
and exact inference framework was introduced. Experiments on real
datasets illustrate that the proposed method can effectively adapt to
bag labeling that does not follow the presence-based assumption.
Moreover, the proposed approach was demonstrated to be competi-
tive compared to state-of-the-art techniques for the generalized MIL
setting.

2284



7. REFERENCES

[1] N. Weidmann, E. Frank, and B. Pfahringer, “A two-level learn-
ing method for generalized multi-instance problems,” in Euro-
pean Conference on Machine Learning, pp. 468–479. 2003.

[2] Z.-J. Zha, X.-S. Hua, T. Mei, J. Wang, G.-J. Qi, and Z. Wang,
“Joint multi-label multi-instance learning for image classifica-
tion,” in Computer Vision and Pattern Recognition, 2008, pp.
1–8.

[3] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving
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