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ABSTRACT
We introduce a novel family of distances, called the chord
gap divergences, that generalizes the Jensen/Burbea-Rao dis-
tances and study its properties. It follows a generalization of
the statistical Bhattacharyya distance that is frequently met in
applications. We then report an iterative concave-convex pro-
cedure for computing centroids, and analyze the performance
of the k-means++ clustering with respect to that new dissimi-
larity measure by introducing the Taylor-Lagrange remainder
form of skew Jensen divergences.

Index Terms— Jensen/Burbea-Rao divergence, Breg-
man divergence, Jensen-Bregman divergence, centroid, k-
means++

1. INTRODUCTION

In many applications, one faces the crucial dilemma of choos-
ing an appropriate distance D(·, ·) between data. In some
cases, those distances can be picked up a priori from well-
grounded principles (e.g., Kullback-Leibler distance in statis-
tical estimation [1]). In other cases, one is rather left at testing
several distances [2], and choose a posteriori the distance that
yielded the best performance. For the latter cases, it is judi-
cious to consider a family of parametric distances Dα(·, ·),
and learn [3] the hyperparameter α according to the applica-
tion at hand and potentially the dataset (distance selection).
Thus it is interesting to consider parametric generalizations
of common distances [4] to improve performance in applica-
tions.

Some distances can be designed from inequality gaps [5,
6]. For example, the Jensen divergence JF (p, q) (also called
the Burbea-Rao divergence [5, 7]) is designed from the in-
equality gap of Jensen inequality F

(
p+q

2

)
≤ F (p)+F (q)

2
that holds for a strictly convex function F : JF (p, q) =
F (p)+F (q)

2 − F
(
p+q

2

)
. We can extend the Jensen diver-

gence to a parametric family of skew Jensen divergences
JαF (with α ∈ (0, 1)) built on the convex inequality gap
F ((1− α)p+ αq) ≤ (1− α)F (p) + αF (q):

JαF (p : q) = (1−α)F (p)+αF (q)−F ((1−α)p+αq), (1)

Bhatα(p : q) = − log
∫
p(x)1−αq(x)αdx JαF (θp : θq) = (F (θp)F (θq))α − F ((θpθq)α)

BF (θq : θp) = F (θq)− F (θp)− (θq − θp)>∇F (θq)KL(p : q) =
∫
p(x) log p(x)

q(x)dx

Exponential families

p(x; θ) = exp(θ>x− F (θ))
Generic distributions

p(x) = p(x; θp)

q(x) = p(x; θq)

Parameter divergencesStatistical distances

limα→0+
1
αBhatα(p : q)

limα→0+
1
αJ

α
F (p : q)

Fig. 1. Links between the statistical skew Bhattacharyya dis-
tances and parametric skew Jensen divergences when distri-
butions belong to the same exponential family.

satisfying JαF (q : p) = J1−α
F (p : q) and J

1
2

F (p : q) =
JF (p, q). Here the ’:’ notation emphasizes the fact that the
distance is potentially asymmetric JαF (p : q) 6= JαF (q : p).
The term divergence is used in information geometry [9]
to refer to the smoothness of the distance that yields an
information-geometric structure of the space induced by the
divergence. Let [p, q] = {(pq)λ := (1−λ)p+λq, λ ∈ [0, 1]}
denote the line segment with endpoints p and q. Then we can
rewrite [8] Eq.1:

JαF (p : q) = (F (p)F (q))α − F ((pq)α). (2)

In applications, it is rather the relative comparisons of dis-
tances rather than their absolute values that is important.
Thus we may multiply a distance by any positive scaling
factor and include it in the class of that distance. When
F is strictly convex and differentiable, the class of Jensen
divergences include in the limit cases the Bregman diver-
gences [7, 10, 11]: limα→0+

JαF (p:q)
α = BF (q : p), and

limα→1−
JαF (p:q)

1−α = BF (p : q), where

BF (p : q) = F (p)− F (q)− (p− q)>∇F (q), (3)

is the Bregman divergence [13]. Overall, one may define the
smooth parametric family of scaled skew Jensen divergences:
sJαF (p : q) = 1

α(1−α)J
α
F (p : q) that encompasses the Breg-

man divergence BF (p : q) and the reverse Bregman diver-
gence BF (q : p) in limit cases (with α ∈ R).

There is a nice relationship between Jensen divergences
operating on parameters (e.g., vectors, matrices) and a class
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Fig. 2. The triparametric chord gap divergence.

of statistical distances between probability distributions (Fig-
ure 1): Let {p(x; θ)}θ be an exponential family [11] (includes
the Gaussian family and the finite discrete “multinoulli” fam-
ily) with convex cumulant function F (θ). Then the skew
Bhattacharryya distance [14]

Bhatα(p : q) = − log

∫
p(x)1−αq(x)αdx, (4)

between two distributions belonging to the same exponential
family amounts to a skew Jensen divergence [7]:

Bhat(p(x; θ1) : p(x; θ2)) = JαF (θ1 : θ2). (5)

We further check that limα→0+
1
αBhatα(p : q) = KL(p : q)

and limα→1−
1

1−αBhatα(p : q) = KL(q : p) where KL(p :

q) =
∫
p(x) log p(x)

q(x) dx is the Kullback-Leibler divergence.
In statistical signal processing, information fusion and

machine learning, one often considers the skew Bhattachar-
ryya distance [15, 16, 17] or the Chernoff distance [18, 19, 20]
for exponential families (e.g., Gaussian/multinoulli): This
highlights the important role in disguise of the equivalent
skew Jensen divergences (see Eq. 5).

The paper is organized as follows: Section 2 introduces
the novel triparametric family of chord gap divergences that
generalizes the skew Jensen divergences (§2.1), describes sev-
eral properties (§2.2), and deduces a generalization of the sta-
tistical Bhattacharyya distance (§ 2.3). Section 3 considers
the calculation of the centroid (§3.1) for the chord gap diver-
gences, and report probabilistic guarantee of the k-means++
seeding (§3.2) by highlighting the Taylor-Lagrange forms of
those divergences.

2. THE CHORD GAP DIVERGENCE

2.1. Definition

Let F : X → R be a strictly convex function. For α, β ∈
(0, 1) with α 6= β, the chord

L = [((pq)α, F ((pq)α))((pq)β , F ((pq)β))] is below the dis-
tinct chord U = [(p, F (p))(q, F (q))]. Thus we can define a
divergence [21] as the vertical gap between these two chords
for a given coordinate x ∈ [(pq)α, (pq)β ]:

Jα,β,γF (p : q) = (F (p)F (q))γ−(F ((pq)α)F ((pq)β))λ, (6)

such that ((pq)α(pq)β)λ = (pq)γ with γ ∈ (α, β) (Figure 2).
A calculation shows that λ = λ(α, β, γ) = γ−α

β−α or γ =

λ(β − α) + α for λ ∈ [0, 1] when α 6= β, so that we get
Jα,β,γF (p : q) = (F (p)F (q))γ − (F ((pq)α)F ((pq)β)) γ−α

β−α
.

2.2. Properties of the chord gap divergence

We have Jα,α,αF (p : q) = JαF (p : q), J0,1,γ
F (p : q) =

Jγ(p : q) and Jα,β,γF (q : p) = J1−α,1−β,1−γ
F (p : q) since

λ(1 − α, 1 − β, 1 − γ) = γ−α
β−α = λ(α, β, γ) using the

fact that (ab)1−δ = (ba)δ for δ ∈ [0, 1]. Thus we have
J1−α,1−α,1−α
F (p : q) = JαF (q : p). For β = 1 − α, γ = 1

2
(and λ = 1

2 ), the chord gap divergence amounts to a scaled
symmetrized skew Jensen divergences [12] (Eq. 35).

We can express the chord gap divergence as the difference
of two skew Jensen divergences (Figure 2):

Jα,β,γF (p : q) = JγF (p : q)− JλF ((pq)α : (pq)β), (7)

with λ = γ−α
β−α or γ = λ(β − α) + α for λ ∈ [0, 1] and

γ ∈ [α, β]. Thus the chord gap divergence can be interpreted
as a truncated skew Jensen divergence.

A biparametric subfamily Jβ,γF of Jα,β,γF is obtained by
setting α = 0 so that (pq)α = p, so that the two upper/lower
chords L and U coincide at extremity p:

Jβ,γF (p : q) = (F (p)F (q))γ − (F (p)F ((pq)β)) γ
β
, (8)

= γ

((
1

β
− 1

)
F (p) + F (q)− 1

β
F ((pq)β)

)
.

When β = 1
2 , we find that J

1
2 ,γ

F (p : q) = 2γJF (p : q),
the ordinary (γ-scaled) Jensen divergence. When β → 0, we
have limβ→0

1
γJ

β,γ
F (p : q) = BF (q : p) (with γ ∈ (0, β))

since − 1
βF ((pq)β) ' − 1

β − (q − p)>∇F (p) using a first-
order Taylor expansion.

Matrix chord gap divergences can be obtained by tak-
ing strictly convex matrix generators [13] (e.g., F (X) =
− log det |X|) for symmetric positive definite matrices X ∈
P++, P++ = {X : X � 0} denote the space of posi-
tive definite matrices, a convex cone. This may be useful in
applications based on covariance matrices [13].

2.3. Generalized Bhattacharrya distances

The interpretation given in Eq. 7 yields a triparametric fam-
ily of Bhattacharryya statistical distances [14] between mem-
bers p(x) = p(x; θp) and q(x) = p(x; θq) of the same ex-
ponential family: Bhatα,β,γ(θp : θq) = Bhatγ(θp : θq) −
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Bhatλ((θpθq)α : (θpθq)β). It follows that

Bhatα,β,γ(θp : θq) = (9)

− log

∫
p(x; θp)

1−γp(x; θq)
γdx∫

p(x; (θpθq)α)1−λp(x; (θpθq)β)λdx
.

Note that when α = β, we have
p(x; (θpθq)α)1−λp(x; (θpθq)β)λ = p(x; (θpθq)α) and there-
fore the denominator is

∫
p(x; (θpθq)α)dx = 1, and we re-

cover the skew Bhattacharryya distance, as expected.
We shall extend the generalized Bhattacharrya divergence

of Eq. 9 to arbitrary distributions by generalizing the notion of
interpolated distribution p(x; (θpθq)δ) = Γδ(p(x; θp), p(x; θq)).
When δ ranges from 0 to 1, we obtain a Bhattacharyya arc
linking p(x; θp) to p(x; θq) (exponential or e-geodesic in
information geometry [9]). We define:

Γδ(p(x), q(x)) =
p(x)1−δq(x)δ

Zδ(p(x) : q(x))
,

with Zδ(p(x) : q(x)) =
∫
p(x)1−δq(x)δdν(x). Note that

we need the integral to converge properly in order to define
Γδ(p(x), q(x)). This always holds for distributions belonging
to the same exponential families since (θpθq)δ is guaranteed
to belong to the natural parameter space, and

Zδ(p(x; θp) : p(x; θq)) = exp(−JδF (θp : θq)). (10)

By extension, the triparametric Bhattacharryya distance
can be defined by:

Bhatα,β,γ(p(x) : q(x)) =

− log

( ∫
p(x)1−γq(x)γdν(x)

Γα(p(x), q(x))1−γΓβ(p(x), q(x))γ

)
. (11)

Thus we explicitly define the generalized Bhattacharrya dis-
tance by:

Bhat
α,β,γ

(p(x) : q(x)) =

− log


∫
p(x)1−γq(x)γdν(x)

∫ ( p(x)1−αq(x)αdν(x)∫
p(x)1−αq(x)αdν(x)

)1−λ (
p(x)1−βq(x)βdν(x)∫
p(x)1−βq(x)βdν(x)

)λ
dν(x)



Notice that when α = β, for any λ ∈ [0, 1], the denom-
inator collapses to one, and we find that Bhatα,β,γ(p(x) :
q(x)) = Bhatα(p(x) : q(x)), as expected.

For multivariate gaussians/normals belonging to the fam-
ily {N (µ,Σ) : µ ∈ Rd,Σ ∈ Pd++}, we have the natural
parameter [22] θ = (v,M) = (Σ−1µ,− 1

2Σ−1), and the
cumulant function F (v,M) = d

2 log 2π − 1
2 log | − 2M | −

1
4v
>M−1v that can also be expressed in the usual param-

eters F (µ,Σ) = 1
2 log(2π)d|Σ| + 1

2µ
>Σ−1µ. We have

(θpθq)δ = ((1 − δ)Σ−1
p µp + δΣ−1

q µq,− 1−δ
2 Σ−1

p − δ
2Σ−1

q )
so that we get [23]: JαF (p(x;µp,Σp) : p(x;µq,Σq)) =
α(1−α)

2 ∆µ>((1−α)Σp+αΣq)
−1∆µ+ 1

2 log
|(1−α)Σp+αΣq|
|Σp|1−α|Σq|α

with |.| the determinant and ∆µ = µq − µp. This gives a
closed-form formula for Bhatα,β,γ for multivariate Gaus-
sians.

3. CENTROID-BASED CLUSTERING

Bhattacharrya clustering is often used in statistical signal pro-
cessing, information fusion, and machine learning (see [15,
24, 25, 26] for some illustrative examples). Popular cluster-
ing algorithms are center-based clustering, where each cluster
stores a prototype (a representative element), and each datum
is assigned to the cluster with the closest prototype wrt. a dis-
tance function. The cluster prototypes are then updated, and
the algorithm iterates until (local) convergence. This scheme
includes the k-means and the k-medians [27]. Lloyd k-means
heuristic updates the prototype c of a cluster X by choosing
its center of mass c = 1

|X|
∑
x∈X x that minimizes the cluster

variance: minc
∑
x∈X ‖x − c‖2 (this holds for any Bregman

divergence too [11]).

3.1. Chord gap divergence centroid

We extend k-means for a weighted point set

P = {(w1, p2), . . . , (wn, pn)},

with wi > 0 and
∑
i wi = 1, using the chord gap di-

vergence by solving the following minimization problem:
minxE(x) =

∑n
i=1 wiJ

α,β,γ
F (pi : x). By expanding the

chord gap divergence formula and removing all terms inde-
pendent of x, we obtain an equivalent minimization prob-
lem as a difference of convex function programming [28]:
minxE(x) = minxA(x)−B(x) withA(x) =

∑n
i=1(F (pi)F (x))γ

and B(x) =
∑n
i=1(F ((pix)α)F ((pix)β))λ, both strictly

convex functions. It follows a concave-convex procedure [29]
(CCCP) solving locally minxA(x)−B(x): initialize x0 = p1

and then iteratively update ∇A(xt+1) = ∇B(xt). When the
reciprocal gradient∇A−1 is available in closed form, we end
up with xt+1 = ∇A−1(∇B(xt)). Since we have ∇A(x) =
nγ∇F (x) and ∇B(x) =

∑
i(1 − λ)α∇F (F ((pix)α) +

λβ∇F ((pix)β), the update rule is

xt+1 =

∇F−1

(
1

γ

∑
i

wi ((1− λ)α∇F ((pixt)α) + λβ∇F ((pixt)β))

)
.

When α = β = γ, we find the simplified update rule
xt+1 = ∇F−1 (

∑
i wi∇F ((pixt)α) corresponding to the

skew Jensen divergences [7]. Note that it is enough to im-
prove iteratively the prototypes to get a variational Lloyd’s
k-means [30].

3.2. Performance analysis of k-means++

For high-performance clustering, one may use k-means++ [31]
that is a guaranteed probabilistic initialization of the cluster
prototypes. To get an expected competitive ratio [31] of
2U2(1 + V )(2 + log k) [30], we need to upper bound: (i)
U such that the divergence D = Jα,βγF satisfies the U -
triangular inequality D(x : z) ≤ U(D(x : y) + D(y : z)),
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and (ii) V such that the divergence satisfies the symmetric
inequality D(y : x) ≤ V D(x : y). The proof follows the
proof reported in [30] for total Jensen divergences once we
can express the divergences in their Taylor-Lagrange forms
D(p : q) = (p− q)>HD(p : q)(p− q) where HD(p : q) � 0.
For example, the Taylor-Lagrange form of the Bregman di-
vergence [32] is obtained from a first-order Taylor expansion
with the exact Lagrange remainder:

BF (p : q) =
1

2
(p− q)>∇2F (ξ)(p− q), (12)

for some ξ ∈ [p, q]. This expression can be interpreted as a
squared Mahalanobis distanceMQ(p, q) = (p−q)>Q(p−q)
with precision matrix Q = 1

2∇
2F (ξ) depending on p and q.

Any squared Mahalanobis distance satisfies U = 2 (see [33])
and V = 1, and can be interpreted as a squared norm-induced
distance: MQ(p, q) = ‖Q 1

2 (p− q)‖22.
We report the Taylor-Lagrange form of the skew Jensen

divergences: There exists ξ1, ξ2 ∈ [p, q], such that the skew
Jensen divergence can be expressed as JαF (p : q) = (p −
q)>Hα

F (p : q)(p− q), with

Hα
F (p : q) =

1

2
α(1− α)(α∇2F (ξ1) + (1− α)∇2F (ξ2)).

(13)
The proof relies on introducing the skew Jensen-Bregman

(JB) divergence [7] defined by

JBαF (p : q) = (1− α)BF (p : (pq)α) + αBF (q : (pq)α),
(14)

and observing the JBαF (p : q) = JαF (p : q) since p− (pq)α =
α(p − q) and q − (pq)α = (1 − α)(q − p) (and there-
fore the ∇F ((pq)α)-terms cancel out). Then we apply the
Taylor-Lagrange form of Bregman divergences of Eq. 12
to get the result. Notice that when α → 0 or α → 1, the
scaled skew Jensen difference tend to Bregman divergences,

and we have limα→1
J

(α)
F (p:q)

α(1−α) = 1
2 (p − q)>∇2F (ξ1)(p −

q) = BF (p : q) for ξ1 ∈ [p, q], and limα→0
J

(α)
F (p:q)

α(1−α) =
1
2 (p − q)>∇2F (ξ2)(p − q) = BF (q : p) for ξ2 ∈ [p, q] , as
expected.

Using expression of Eq. 7 for the chord gap divergence,
and the fact that (pq)α − (pq)β = (α− β)(q− p), we get the
Taylor-Lagrange form of the chord gap divergence Jα,β,γF =

(p− q)>Hα,β,γ
F (p : q)(p− q) with

H
α,β,γ
F

(p : q) =
1

2
γ(1 − γ)∇2

F (ξ
′
) −

1

2
λ(1 − λ)(α − β)2∇2

F (ξ
′′
), (15)

=
1

2

(
γ(1 − γ)∇2

F (ξ
′
) − (γ − α)(γ − β)∇2

F (ξ
′′
)
)
, (16)

for ξ′, ξ′′ ∈ X .
When dealing with a finite (weighted) point set P , let

ρ =
supξ′,ξ′′,p,q∈co(P) ‖(∇2F (ξ′))

1
2 (p− q)‖

infξ′,ξ′′,p,q∈co(P) ‖(∇2F (ξ′′))
1
2 (p− q)‖

<∞, (17)

where co(P) denotes the convex closure of P Then it comes
that U = Oρ(1) and V = Oρ(1) so that k-means++ prob-
abilistic seeding is Ōρ(log k) competitive for the chord gap
divergence.

4. CONCLUDING REMARKS

We introduced the chord gap divergence as a generalization
of the skew Jensen divergences [7, 13], studied its proper-
ties and obtained a generalization of the skew Bhattachar-
rya divergences. We showed that the chord gap divergence
centroid can be obtained using a convex-concave iterative
procedure [7], and analyzed the k-means++ [31] perfor-
mance by giving the Taylor-Lagrange forms of the skew
Jensen and chord gap divergences. We expect our contri-
butions to be useful for the signal processing, information
fusion and machine learning communities where the Bhat-
tacharrya [34, 35] or Chernoff information [2, 18] is often
used. In practice, the triparametric chord gap divergence
shall be tuned according to the application at hand (and the
dataset for supervised tasks using cross-validation for ex-
ample). JavaTM source code is available for reproducible
research:www.lix.polytechnique.fr/˜nielsen/CGD/
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