# THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE

Frank Nielsen

École Polytechnique Sony Computer Science Laboratories, Inc Frank.Nielsen@acm.org

# ABSTRACT

We introduce a novel family of distances, called the chord gap divergences, that generalizes the Jensen/Burbea-Rao distances and study its properties. It follows a generalization of the statistical Bhattacharyya distance that is frequently met in applications. We then report an iterative concave-convex procedure for computing centroids, and analyze the performance of the k-means++ clustering with respect to that new dissimilarity measure by introducing the Taylor-Lagrange remainder form of skew Jensen divergences.

*Index Terms*— Jensen/Burbea-Rao divergence, Bregman divergence, Jensen-Bregman divergence, centroid, *k*means++

# 1. INTRODUCTION

In many applications, one faces the crucial dilemma of choosing an appropriate distance  $D(\cdot, \cdot)$  between data. In some cases, those distances can be picked up *a priori* from wellgrounded principles (e.g., Kullback-Leibler distance in statistical estimation [1]). In other cases, one is rather left at testing several distances [2], and choose *a posteriori* the distance that yielded the best performance. For the latter cases, it is judicious to consider a family of parametric distances  $D_{\alpha}(\cdot, \cdot)$ , and learn [3] the hyperparameter  $\alpha$  according to the application at hand and potentially the dataset (distance selection). Thus it is interesting to consider parametric generalizations of common distances [4] to improve performance in applications.

Some distances can be designed from inequality gaps [5, 6]. For example, the Jensen divergence  $J_F(p,q)$  (also called the Burbea-Rao divergence [5, 7]) is designed from the inequality gap of Jensen inequality  $F\left(\frac{p+q}{2}\right) \leq \frac{F(p)+F(q)}{2}$  that holds for a strictly convex function F:  $J_F(p,q) = \frac{F(p)+F(q)}{2} - F\left(\frac{p+q}{2}\right)$ . We can extend the Jensen divergence to a parametric family of skew Jensen divergences  $J_F^{\alpha}$  (with  $\alpha \in (0,1)$ ) built on the convex inequality gap  $F((1-\alpha)p+\alpha q) \leq (1-\alpha)F(p) + \alpha F(q)$ :

$$J_F^{\alpha}(p:q) = (1-\alpha)F(p) + \alpha F(q) - F((1-\alpha)p + \alpha q), \quad (1)$$



**Fig. 1**. Links between the statistical skew Bhattacharyya distances and parametric skew Jensen divergences when distributions belong to the same exponential family.

satisfying  $J_F^{\alpha}(q:p) = J_F^{1-\alpha}(p:q)$  and  $J_F^{\frac{1}{2}}(p:q) = J_F(p,q)$ . Here the ':' notation emphasizes the fact that the distance is potentially asymmetric  $J_F^{\alpha}(p:q) \neq J_F^{\alpha}(q:p)$ . The term divergence is used in information geometry [9] to refer to the smoothness of the distance that yields an information-geometric structure of the space induced by the divergence. Let  $[p,q] = \{(pq)_{\lambda} := (1-\lambda)p + \lambda q, \lambda \in [0,1]\}$  denote the line segment with endpoints p and q. Then we can rewrite [8] Eq.1:

$$J_F^{\alpha}(p:q) = (F(p)F(q))_{\alpha} - F((pq)_{\alpha}).$$
<sup>(2)</sup>

In applications, it is rather the relative comparisons of distances rather than their absolute values that is important. Thus we may multiply a distance by any positive scaling factor and include it in the class of that distance. When F is strictly convex and differentiable, the class of Jensen divergences include in the limit cases the Bregman divergences [7, 10, 11]:  $\lim_{\alpha\to 0^+} \frac{J_F^{\alpha}(p;q)}{\alpha} = B_F(q : p)$ , and  $\lim_{\alpha\to 1^-} \frac{J_F^{\alpha}(p;q)}{1-\alpha} = B_F(p:q)$ , where

$$B_F(p:q) = F(p) - F(q) - (p-q)^\top \nabla F(q),$$
 (3)

is the Bregman divergence [13]. Overall, one may define the smooth parametric family of scaled skew Jensen divergences:  $sJ_F^{\alpha}(p:q) = \frac{1}{\alpha(1-\alpha)}J_F^{\alpha}(p:q)$  that encompasses the Bregman divergence  $B_F(p:q)$  and the reverse Bregman divergence  $B_F(q:p)$  in limit cases (with  $\alpha \in \mathbb{R}$ ).

There is a nice relationship between Jensen divergences operating on parameters (e.g., vectors, matrices) and a class



Fig. 2. The triparametric chord gap divergence.

of statistical distances between probability distributions (Figure 1): Let  $\{p(x; \theta)\}_{\theta}$  be an exponential family [11] (includes the Gaussian family and the finite discrete "multinoulli" family) with convex cumulant function  $F(\theta)$ . Then the skew Bhattacharryya distance [14]

Bhat<sub>$$\alpha$$</sub> $(p:q) = -\log \int p(x)^{1-\alpha} q(x)^{\alpha} dx,$  (4)

between two distributions belonging to the same exponential family amounts to a skew Jensen divergence [7]:

$$Bhat(p(x;\theta_1):p(x;\theta_2)) = J_F^{\alpha}(\theta_1:\theta_2).$$
(5)

We further check that  $\lim_{\alpha \to 0^+} \frac{1}{\alpha} Bhat_{\alpha}(p:q) = KL(p:q)$ and  $\lim_{\alpha \to 1^-} \frac{1}{1-\alpha} Bhat_{\alpha}(p:q) = KL(q:p)$  where  $KL(p:q) = \int p(x) \log \frac{p(x)}{q(x)} dx$  is the Kullback-Leibler divergence.

In statistical signal processing, information fusion and machine learning, one often considers the skew Bhattacharryya distance [15, 16, 17] or the Chernoff distance [18, 19, 20] for exponential families (e.g., Gaussian/multinoulli): This highlights the important role in disguise of the equivalent skew Jensen divergences (see Eq. 5).

The paper is organized as follows: Section 2 introduces the novel triparametric family of chord gap divergences that generalizes the skew Jensen divergences (§2.1), describes several properties (§2.2), and deduces a generalization of the statistical Bhattacharyya distance (§ 2.3). Section 3 considers the calculation of the centroid (§3.1) for the chord gap divergences, and report probabilistic guarantee of the *k*-means++ seeding (§3.2) by highlighting the Taylor-Lagrange forms of those divergences.

#### 2. THE CHORD GAP DIVERGENCE

## 2.1. Definition

Let  $F : \mathcal{X} \to \mathbb{R}$  be a *strictly convex* function. For  $\alpha, \beta \in (0, 1)$  with  $\alpha \neq \beta$ , the chord

 $L = [((pq)_{\alpha}, F((pq)_{\alpha}))((pq)_{\beta}, F((pq)_{\beta}))]$  is below the distinct chord U = [(p, F(p))(q, F(q))]. Thus we can define a divergence [21] as the vertical gap between these two chords for a given coordinate  $x \in [(pq)_{\alpha}, (pq)_{\beta}]$ :

$$J_F^{\alpha,\beta,\gamma}(p:q) = (F(p)F(q))_{\gamma} - (F((pq)_{\alpha})F((pq)_{\beta}))_{\lambda},$$
(6)

such that  $((pq)_{\alpha}(pq)_{\beta})_{\lambda} = (pq)_{\gamma}$  with  $\gamma \in (\alpha, \beta)$  (Figure 2). A calculation shows that  $\lambda = \lambda(\alpha, \beta, \gamma) = \frac{\gamma - \alpha}{\beta - \alpha}$  or  $\gamma = \lambda(\beta - \alpha) + \alpha$  for  $\lambda \in [0, 1]$  when  $\alpha \neq \beta$ , so that we get  $J_F^{\alpha,\beta,\gamma}(p:q) = (F(p)F(q))_{\gamma} - (F((pq)_{\alpha})F((pq)_{\beta}))_{\frac{\gamma - \alpha}{\beta - \alpha}}$ .

## 2.2. Properties of the chord gap divergence

We have  $J_F^{\alpha,\alpha,\alpha}(p:q) = J_F^{\alpha}(p:q), J_F^{0,1,\gamma}(p:q) = J^{\gamma}(p:q)$  and  $J_F^{\alpha,\beta,\gamma}(q:p) = J_F^{1-\alpha,1-\beta,1-\gamma}(p:q)$  since  $\lambda(1-\alpha,1-\beta,1-\gamma) = \frac{\gamma-\alpha}{\beta-\alpha} = \lambda(\alpha,\beta,\gamma)$  using the fact that  $(ab)_{1-\delta} = (ba)_{\delta}$  for  $\delta \in [0,1]$ . Thus we have  $J_F^{1-\alpha,1-\alpha,1-\alpha}(p:q) = J_F^{\alpha}(q:p)$ . For  $\beta = 1-\alpha, \gamma = \frac{1}{2}$  (and  $\lambda = \frac{1}{2}$ ), the chord gap divergence amounts to a scaled symmetrized skew Jensen divergences [12] (Eq. 35).

We can express the chord gap divergence as the difference of two skew Jensen divergences (Figure 2):

$$J_F^{\alpha,\beta,\gamma}(p:q) = J_F^{\gamma}(p:q) - J_F^{\lambda}((pq)_{\alpha}:(pq)_{\beta}), \quad (7)$$

with  $\lambda = \frac{\gamma - \alpha}{\beta - \alpha}$  or  $\gamma = \lambda(\beta - \alpha) + \alpha$  for  $\lambda \in [0, 1]$  and  $\gamma \in [\alpha, \beta]$ . Thus the chord gap divergence can be interpreted as a *truncated* skew Jensen divergence. A biparametric subfamily  $J_F^{\beta,\gamma}$  of  $J_F^{\alpha,\beta,\gamma}$  is obtained by

A biparametric subfamily  $J_F^{\beta,\gamma}$  of  $J_F^{\alpha,\rho,\gamma}$  is obtained by setting  $\alpha = 0$  so that  $(pq)_{\alpha} = p$ , so that the two upper/lower chords L and U coincide at extremity p:

$$J_{F}^{\beta,\gamma}(p:q) = (F(p)F(q))_{\gamma} - (F(p)F((pq)_{\beta}))_{\frac{\gamma}{\beta}}, \qquad (8)$$
$$= \gamma \left( \left(\frac{1}{\beta} - 1\right)F(p) + F(q) - \frac{1}{\beta}F((pq)_{\beta}) \right).$$

When  $\beta = \frac{1}{2}$ , we find that  $J_F^{\frac{1}{2},\gamma}(p:q) = 2\gamma J_F(p:q)$ , the ordinary ( $\gamma$ -scaled) Jensen divergence. When  $\beta \to 0$ , we have  $\lim_{\beta\to 0} \frac{1}{\gamma} J_F^{\beta,\gamma}(p:q) = B_F(q:p)$  (with  $\gamma \in (0,\beta)$ ) since  $-\frac{1}{\beta} F((pq)_{\beta}) \simeq -\frac{1}{\beta} - (q-p)^\top \nabla F(p)$  using a first-order Taylor expansion.

Matrix chord gap divergences can be obtained by taking strictly convex matrix generators [13] (e.g.,  $F(X) = -\log \det |X|$ ) for symmetric positive definite matrices  $X \in \mathbb{P}_{++}$ ,  $\mathbb{P}_{++} = \{X : X \succ 0\}$  denote the space of positive definite matrices, a convex cone. This may be useful in applications based on covariance matrices [13].

#### 2.3. Generalized Bhattacharrya distances

The interpretation given in Eq. 7 yields a triparametric family of Bhattacharryya statistical distances [14] between members  $p(x) = p(x; \theta_p)$  and  $q(x) = p(x; \theta_q)$  of the same exponential family: Bhat<sub> $\alpha,\beta,\gamma$ </sub>( $\theta_p : \theta_q$ ) = Bhat<sub> $\gamma$ </sub>( $\theta_p : \theta_q$ ) – Bhat<sub> $\lambda$ </sub>( $(\theta_p \theta_q)_{\alpha} : (\theta_p \theta_q)_{\beta}$ ). It follows that

Bhat<sub>$$\alpha,\beta,\gamma$$</sub>( $\theta_p: \theta_q$ ) = (9)  
-  $\log \frac{\int p(x; \theta_p)^{1-\gamma} p(x; \theta_q)^{\gamma} dx}{\int p(x; (\theta_p \theta_q)_{\alpha})^{1-\lambda} p(x; (\theta_p \theta_q)_{\beta})^{\lambda} dx}.$ 

Note that when  $\alpha = \beta$ , we have

 $p(x; (\theta_p \theta_q)_{\alpha})^{1-\lambda} p(x; (\theta_p \theta_q)_{\beta})^{\lambda} = p(x; (\theta_p \theta_q)_{\alpha})$  and therefore the denominator is  $\int p(x; (\theta_p \theta_q)_{\alpha}) dx = 1$ , and we recover the skew Bhattacharryya distance, as expected.

We shall extend the generalized Bhattacharrya divergence of Eq. 9 to arbitrary distributions by generalizing the notion of interpolated distribution  $p(x; (\theta_p \theta_q)_{\delta}) = \Gamma_{\delta}(p(x; \theta_p), p(x; \theta_q))$ . When  $\delta$  ranges from 0 to 1, we obtain a Bhattacharyya arc linking  $p(x; \theta_p)$  to  $p(x; \theta_q)$  (exponential or *e*-geodesic in information geometry [9]). We define:

$$\Gamma_{\delta}(p(x), q(x)) = \frac{p(x)^{1-\delta}q(x)^{\delta}}{Z_{\delta}(p(x): q(x))},$$

with  $Z_{\delta}(p(x) : q(x)) = \int p(x)^{1-\delta} q(x)^{\delta} d\nu(x)$ . Note that we need the integral to converge properly in order to define  $\Gamma_{\delta}(p(x), q(x))$ . This always holds for distributions belonging to the same exponential families since  $(\theta_p \theta_q)_{\delta}$  is guaranteed to belong to the natural parameter space, and

$$Z_{\delta}(p(x;\theta_p):p(x;\theta_q)) = \exp(-J_F^{\delta}(\theta_p:\theta_q)).$$
(10)

By extension, the triparametric Bhattacharryya distance can be defined by:

$$Bhat^{\alpha,\beta,\gamma}(p(x):q(x)) = -\log\left(\frac{\int p(x)^{1-\gamma}q(x)^{\gamma}d\nu(x)}{\Gamma_{\alpha}(p(x),q(x))^{1-\gamma}\Gamma_{\beta}(p(x),q(x))^{\gamma}}\right).$$
(11)

Thus we explicitly define the generalized Bhattacharrya distance by:

$$Bhat^{\alpha,\beta,\gamma}(p(x):q(x)) = \\ -\log\left(\frac{\int p(x)^{1-\gamma}q(x)^{\gamma}d\nu(x)}{\int \left(\frac{p(x)^{1-\alpha}q(x)^{\alpha}d\nu(x)}{\int p(x)^{1-\alpha}q(x)^{\alpha}d\nu(x)}\right)^{1-\lambda} \left(\frac{p(x)^{1-\beta}q(x)^{\beta}d\nu(x)}{\int p(x)^{1-\beta}q(x)^{\beta}d\nu(x)}\right)^{\lambda}d\nu(x)}\right)$$

Notice that when  $\alpha = \beta$ , for any  $\lambda \in [0, 1]$ , the denominator collapses to one, and we find that  $Bhat_{\alpha,\beta,\gamma}(p(x) : q(x)) = Bhat_{\alpha}(p(x) : q(x))$ , as expected.

For multivariate gaussians/normals belonging to the family  $\{\mathcal{N}(\mu, \Sigma) : \mu \in \mathbb{R}^d, \Sigma \in \mathbb{P}_{++}^d\}$ , we have the natural parameter [22]  $\theta = (v, M) = (\Sigma^{-1}\mu, -\frac{1}{2}\Sigma^{-1})$ , and the cumulant function  $F(v, M) = \frac{d}{2}\log 2\pi - \frac{1}{2}\log |-2M| - \frac{1}{4}v^{\top}M^{-1}v$  that can also be expressed in the usual parameters  $F(\mu, \Sigma) = \frac{1}{2}\log(2\pi)^d |\Sigma| + \frac{1}{2}\mu^{\top}\Sigma^{-1}\mu$ . We have  $(\theta_p\theta_q)_{\delta} = ((1-\delta)\Sigma_p^{-1}\mu_p + \delta\Sigma_q^{-1}\mu_q, -\frac{1-\delta}{2}\Sigma_p^{-1} - \frac{\delta}{2}\Sigma_q^{-1})$  so that we get [23]:  $J_F^{\alpha}(p(x;\mu_p,\Sigma_p) : p(x;\mu_q,\Sigma_q)) = \frac{\alpha(1-\alpha)}{2}\Delta\mu^{\top}((1-\alpha)\Sigma_p + \alpha\Sigma_q)^{-1}\Delta\mu + \frac{1}{2}\log\frac{|(1-\alpha)\Sigma_p + \alpha\Sigma_q|}{|\Sigma_p|^{1-\alpha}|\Sigma_q|^{\alpha}}$  with |.| the determinant and  $\Delta\mu = \mu_q - \mu_p$ . This gives a closed-form formula for Bhat<sup> $\alpha,\beta,\gamma$ </sup> for multivariate Gaussians.

#### 3. CENTROID-BASED CLUSTERING

Bhattacharrya clustering is often used in statistical signal processing, information fusion, and machine learning (see [15, 24, 25, 26] for some illustrative examples). Popular clustering algorithms are center-based clustering, where each cluster stores a prototype (a representative element), and each datum is assigned to the cluster with the closest prototype wrt. a distance function. The cluster prototypes are then updated, and the algorithm iterates until (local) convergence. This scheme includes the k-means and the k-medians [27]. Lloyd k-means heuristic updates the prototype c of a cluster X by choosing its center of mass  $c = \frac{1}{|X|} \sum_{x \in X} x$  that minimizes the cluster variance:  $\min_c \sum_{x \in X} ||x - c||^2$  (this holds for any Bregman divergence too [11]).

#### 3.1. Chord gap divergence centroid

We extend k-means for a weighted point set

$$\mathcal{P} = \{(w_1, p_2), \dots, (w_n, p_n)\},\$$

with  $w_i > 0$  and  $\sum_i w_i = 1$ , using the chord gap divergence by solving the following minimization problem:  $\min_x E(x) = \sum_{i=1}^n w_i J_F^{\alpha,\beta,\gamma}(p_i : x)$ . By expanding the chord gap divergence formula and removing all terms independent of x, we obtain an equivalent minimization problem as a difference of convex function programming [28]:  $\min_x E(x) = \min_x A(x) - B(x)$  with  $A(x) = \sum_{i=1}^n (F(p_i)F(x))_{\gamma}$  and  $B(x) = \sum_{i=1}^n (F((p_ix)_{\alpha})F((p_ix)_{\beta}))_{\lambda}$ , both strictly convex functions. It follows a concave-convex procedure [29] (CCCP) solving locally  $\min_x A(x) - B(x)$ : initialize  $x_0 = p_1$  and then iteratively update  $\nabla A(x_{t+1}) = \nabla B(x_t)$ . When the reciprocal gradient  $\nabla A^{-1}$  is available in closed form, we end up with  $x_{t+1} = \nabla A^{-1}(\nabla B(x_t))$ . Since we have  $\nabla A(x) = n\gamma \nabla F(x)$  and  $\nabla B(x) = \sum_i (1 - \lambda) \alpha \nabla F(F((p_ix)_{\alpha}) + \lambda\beta \nabla F(((p_ix)_{\beta}))$ , the update rule is

$$\nabla F^{-1}\left(\frac{1}{\gamma}\sum_{i}w_{i}\left((1-\lambda)\alpha\nabla F((p_{i}x_{t})_{\alpha})+\lambda\beta\nabla F((p_{i}x_{t})_{\beta})\right)\right).$$

When  $\alpha = \beta = \gamma$ , we find the simplified update rule  $x_{t+1} = \nabla F^{-1} (\sum_i w_i \nabla F((p_i x_t)_{\alpha}))$  corresponding to the skew Jensen divergences [7]. Note that it is enough to improve iteratively the prototypes to get a variational Lloyd's k-means [30].

#### **3.2.** Performance analysis of *k*-means++

For high-performance clustering, one may use k-means++ [31] that is a guaranteed probabilistic initialization of the cluster prototypes. To get an expected competitive ratio [31] of  $2U^2(1+V)(2+\log k)$  [30], we need to upper bound: (i) U such that the divergence  $D = J_F^{\alpha,\beta\gamma}$  satisfies the U-triangular inequality  $D(x:z) \leq U(D(x:y) + D(y:z))$ ,

x

and (ii) V such that the divergence satisfies the symmetric inequality  $D(y : x) \leq VD(x : y)$ . The proof follows the proof reported in [30] for total Jensen divergences once we can express the divergences in their Taylor-Lagrange forms  $D(p:q) = (p-q)^{\top}H_D(p:q)(p-q)$  where  $H_D(p:q) \succ 0$ . For example, the Taylor-Lagrange form of the Bregman divergence [32] is obtained from a first-order Taylor expansion with the exact Lagrange remainder:

$$B_F(p:q) = \frac{1}{2}(p-q)^{\top} \nabla^2 F(\xi)(p-q), \qquad (12)$$

for some  $\xi \in [p,q]$ . This expression can be interpreted as a squared Mahalanobis distance  $M_Q(p,q) = (p-q)^\top Q(p-q)$  with precision matrix  $Q = \frac{1}{2} \nabla^2 F(\xi)$  depending on p and q. Any squared Mahalanobis distance satisfies U = 2 (see [33]) and V = 1, and can be interpreted as a squared norm-induced distance:  $M_Q(p,q) = ||Q^{\frac{1}{2}}(p-q)||_2^2$ .

We report the Taylor-Lagrange form of the skew Jensen divergences: There exists  $\xi_1, \xi_2 \in [p, q]$ , such that the skew Jensen divergence can be expressed as  $J_F^{\alpha}(p:q) = (p-q)^{\top}H_F^{\alpha}(p:q)(p-q)$ , with

$$H_F^{\alpha}(p:q) = \frac{1}{2}\alpha(1-\alpha)(\alpha\nabla^2 F(\xi_1) + (1-\alpha)\nabla^2 F(\xi_2)).$$
(13)

The proof relies on introducing the skew Jensen-Bregman (JB) divergence [7] defined by

$$JB_F^{\alpha}(p:q) = (1-\alpha)B_F(p:(pq)_{\alpha}) + \alpha B_F(q:(pq)_{\alpha}),$$
(14)

and observing the  $JB_F^{\alpha}(p:q) = J_F^{\alpha}(p:q)$  since  $p - (pq)_{\alpha} = \alpha(p-q)$  and  $q - (pq)_{\alpha} = (1-\alpha)(q-p)$  (and therefore the  $\nabla F((pq)_{\alpha})$ -terms cancel out). Then we apply the Taylor-Lagrange form of Bregman divergences of Eq. 12 to get the result. Notice that when  $\alpha \to 0$  or  $\alpha \to 1$ , the scaled skew Jensen difference tend to Bregman divergences, and we have  $\lim_{\alpha\to 1} \frac{J_F^{(\alpha)}(p:q)}{\alpha(1-\alpha)} = \frac{1}{2}(p-q)^{\top}\nabla^2 F(\xi_1)(p-q)$  $q) = B_F(p:q)$  for  $\xi_1 \in [p,q]$ , and  $\lim_{\alpha\to 0} \frac{J_F^{(\alpha)}(p:q)}{\alpha(1-\alpha)} = \frac{1}{2}(p-q)^{\top}\nabla^2 F(\xi_2)(p-q) = B_F(q:p)$  for  $\xi_2 \in [p,q]$ , as expected.

Using expression of Eq. 7 for the chord gap divergence, and the fact that  $(pq)_{\alpha} - (pq)_{\beta} = (\alpha - \beta)(q - p)$ , we get the Taylor-Lagrange form of the chord gap divergence  $J_F^{\alpha,\beta,\gamma} = (p-q)^{\top} H_F^{\alpha,\beta,\gamma}(p:q)(p-q)$  with

$$H_{F}^{\alpha,\beta,\gamma}(p:q) = \frac{1}{2}\gamma(1-\gamma)\nabla^{2}F(\xi') - \frac{1}{2}\lambda(1-\lambda)(\alpha-\beta)^{2}\nabla^{2}F(\xi''),$$
(15)  
$$= \frac{1}{2}\left(\gamma(1-\gamma)\nabla^{2}F(\xi') - (\gamma-\alpha)(\gamma-\beta)\nabla^{2}F(\xi'')\right),$$
(16)

for  $\xi', \xi'' \in \mathcal{X}$ .

When dealing with a finite (weighted) point set  $\mathcal{P}$ , let

$$\rho = \frac{\sup_{\xi',\xi'',p,q\in\mathrm{co}(\mathcal{P})} \|(\nabla^2 F(\xi'))^{\frac{1}{2}}(p-q)\|}{\inf_{\xi',\xi'',p,q\in\mathrm{co}(\mathcal{P})} \|(\nabla^2 F(\xi''))^{\frac{1}{2}}(p-q)\|} < \infty, \quad (17)$$

where  $co(\mathcal{P})$  denotes the convex closure of  $\mathcal{P}$  Then it comes that  $U = O_{\rho}(1)$  and  $V = O_{\rho}(1)$  so that k-means++ probabilistic seeding is  $\bar{O}_{\rho}(\log k)$  competitive for the chord gap divergence.

## 4. CONCLUDING REMARKS

We introduced the chord gap divergence as a generalization of the skew Jensen divergences [7, 13], studied its properties and obtained a generalization of the skew Bhattacharrya divergences. We showed that the chord gap divergence centroid can be obtained using a convex-concave iterative procedure [7], and analyzed the k-means++ [31] performance by giving the Taylor-Lagrange forms of the skew Jensen and chord gap divergences. We expect our contributions to be useful for the signal processing, information fusion and machine learning communities where the Bhattacharrya [34, 35] or Chernoff information [2, 18] is often used. In practice, the triparametric chord gap divergence shall be tuned according to the application at hand (and the dataset for supervised tasks using cross-validation for example). Java<sup>TM</sup> source code is available for reproducible research:www.lix.polytechnique.fr/~nielsen/CGD/

# 5. REFERENCES

- [1] T. M. Cover and J. A. Thomas, *Elements of information theory*, John Wiley & Sons, 2012.
- [2] F. A. Sadjadi, "Performance evaluations of correlations of digital images using different separability measures," *IEEE TPAMI*, vol. 4, no. 4, pp. 436–441, 1982.
- [3] H. Choi, S. Choi, A. Katake, and Y. Choe, "Learning α-integration with partially-labeled data," in *IEEE ICASSP*, 2010, pp. 2058–2061.
- [4] M. M. Deza and E. Deza, *Encyclopedia of Distances*, Springer, 2009.
- [5] J. Burbea and C Rao, "On the convexity of some divergence measures based on entropy functions," *IEEE Transactions on Information Theory*, vol. 28, no. 3, pp. 489–495, 1982.
- [6] F. Nielsen, K. Sun, and S. Marchand-Maillet, "On Hölder projective divergences," *Entropy*, vol. 19, no. 3, pp. 122, 2017.
- [7] F. Nielsen and S. Boltz, "The Burbea-Rao and Bhattacharyya centroids," *IEEE Transactions on Information Theory*, vol. 57, no. 8, pp. 5455–5466, 2011.
- [8] F. Nielsen and R. Nock, "Generalizing Skew Jensen Divergences and Bregman Divergences With Comparative Convexity," *IEEE Signal Processing Letters*, vol. 24, no. 8, pp. 1123-1127, 2017.

- [9] S.-i. Amari, *Information geometry and its applications*, Springer, 2016.
- [10] J. Zhang, "Divergence function, duality, and convex analysis," *Neural Computation*, vol. 16, no. 1, pp. 159– 195, 2004.
- [11] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, "Clustering with Bregman divergences," *JMLR*, vol. 6, no. Oct, pp. 1705–1749, 2005.
- [12] F. Nielsen, "A family of statistical symmetric divergences based on Jensen's inequality," arXiv:1009.4004, 2010.
- [13] A. Cherian, S. Sra, A. Banerjee, and N. Papanikolopoulos, "Jensen-Bregman logdet divergence with application to efficient similarity search for covariance matrices," *IEEE TPAMI*, vol. 35, no. 9, pp. 2161–2174, 2013.
- [14] A. Bhattacharyya, "On a measure of divergence between two multinomial populations," *Sankhyā*, pp. 401– 406, 1946.
- [15] B. Mak and E. Barnard, "Phone clustering using the Bhattacharyya distance," in *International Conference* on Spoken Language (ICSLP), 1996, vol. 4, pp. 2005– 2008.
- [16] C. Sheth and R V. Babu, "Object saliency using a background prior," in *IEEE ICASSP*, 2016, pp. 1931–1935.
- [17] D. Kawai, K. Yamamoto, and S. Nakagawa, "Lyric recognition in monophonic singing using pitchdependent DNN," in *IEEE ICASSP*, 2017, pp. 326–330.
- [18] F. Nielsen, "An information-geometric characterization of Chernoff information," *IEEE Signal Processing Letters*, vol. 20, no. 3, pp. 269–272, 2013.
- [19] R. Boyer and F. Nielsen, "Information geometry metric for random signal detection in large random sensing systems," in *IEEE ICASSP*, 2017, pp. 4471–4475.
- [20] J. Dong, D. Niu, and E. Song, "An approach based on Chernoff distance to sparse sensing for distributed detection," in *IEEE Information Fusion (Fusion)*, 2017, pp. 1–6.
- [21] F. Nielsen, "A generalization of the Jensen divergence: The chord gap divergence," *CoRR*, vol. abs/1709.10498, 2017.
- [22] F. Nielsen and R. Nock, "A closed-form expression for the Sharma-Mittal entropy of exponential families," *Journal of Physics A: Mathematical and Theoretical*, vol. 45, no. 3, pp. 032003, 2011.

- [23] A. Hero, B. Ma, O. Michel, and J. Gorman, "Alphadivergence for classification, indexing and retrieval," *Communication and Signal Processing Laboratory*, *Technical Report CSPL-328*, U. Mich, 2001.
- [24] G. B. Coleman and H. C. Andrews, "Image segmentation by clustering," *Proceedings of the IEEE*, vol. 67, no. 5, pp. 773–785, 1979.
- [25] X. Li, W. Hu, and W. Hu, "A coarse-to-fine strategy for vehicle motion trajectory clustering," in *ICPR*, 2006, vol. 1, pp. 591–594.
- [26] D.-C; Park, Y. Lee, and D.-M. Woo, "Classification of audio signals using a Bhattacharyya kernel-based centroid neural network," *Advances in Knowledge Discovery and Data Mining*, pp. 604–611, 2009.
- [27] S. Har-Peled and S. Mazumdar, "On coresets for kmeans and k-median clustering," in ACM Symposium on Theory Of Computing (STOC), 2004, pp. 291–300.
- [28] P. D. Tao, "The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems," *Annals of operations research*, vol. 133, no. 1-4, pp. 23–46, 2005.
- [29] A. L. Yuille and A. Rangarajan, "The concave-convex procedure (CCCP)," in Advances in neural information processing systems (NIPS), 2002, pp. 1033–1040.
- [30] F. Nielsen and R. Nock, "Total Jensen divergences: definition, properties and clustering," in *IEEE ICASSP*, 2015, pp. 2016–2020.
- [31] D. Arthur and S. Vassilvitskii, "k-means++: The advantages of careful seeding," in ACM-SIAM symposium on Discrete algorithms (SODA), 2007, pp. 1027–1035.
- [32] R. Nock, P. Luosto, and J. Kivinen, "Mixed Bregman clustering with approximation guarantees," *Machine Learning and Knowledge Discovery in Databases*, pp. 154–169, 2008.
- [33] M. R. Ackermann and J. Blömer, "Bregman clustering for separable instances," in *Scandinavian Symposium* and Workshops on Algorithm Theory (SWAT), pp. 212– 223, 2010.
- [34] H. Sun, Z. Liu, and L. Kong, "A document clustering method based on hierarchical algorithm with model clustering," in *Advanced Information Networking and Applications-Workshops*. IEEE, 2008, pp. 1229–1233.
- [35] Z. Yu, P. Luo, J.e You, H.-S. Wong, H. Leung, S. Wu, J. Zhang, and G. Han, "Incremental semi-supervised clustering ensemble for high dimensional data clustering," *IEEE Transactions on Knowledge and Data Engineering*, vol. 28, no. 3, pp. 701–714, 2016.