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ABSTRACT

The first step in solving a classification problem is to collect and
label a sufficient amount of training data. Given the time and cost
associated to data labeling, crowdsourcing systems (e.g., Amazon
Mechanical Turk) are often used. However, one of the key disad-
vantages of crowdsourcing systems is the presence of spammers or
workers who are not as skilled or careful, thus leading to many false
labels being assigned. This paper addresses this problem by propos-
ing a novel algorithm based on graph signal sampling theory, which
optimally assigns data to different workers for labeling by taking into
account the expected quality of labeling provided by each worker.
Our simulation of the labeling process using these schemes shows
that the classification error can be reduced significantly with respect
to a random assignment of workers.

Index Terms— Crowdsourcing, resource allocation, labeling,
Graph Signal Processing

1. INTRODUCTION

One of the key problems in semi-supervised learning is that of deter-
mining which items to label. Substantial progress has been made in
this area with a focus on active learning, where the main objective is
to select for labeling those data points that are most informative. State
of the art studies [1, 2, 3] address the problem of selecting data points
to label in order to minimize the class prediction error achievable
with a given number of labels.

Our work is motivated by the observation that none of these works
take into consideration potential errors in the labeling. Assuming
that there are no labeling errors, or that their number is negligible,
is reasonable when labeling is conducted by experts [4], or when
there are guarantees that a sufficient amount of time is being invested
in the labeling task [5]. In practice, however, this is rarely the case.
Manual labeling is subject to significant constraints, including cost,
time and reliability. Other more subjective factors, such as honesty of
the workers, diversity of the group of labelers or the wording of the
questions, influence the labels obtained [6].

Ideally, one would like to maximize the quality of labels obtained,
but it is easy to see that hiring experts or supervising people to ensure
they are focused on the task will be expensive and time-consuming.
Therefore it is becoming increasingly common to use crowd-sourcing
platforms such as Amazon’s Mechanical Turk [7] or Crowdflower
[8] in order to obtain labels. Crowdsourcing can be much cheaper,
and some studies have shown that acceptable label quality can be
achieved in some cases [6]. Crowdsourcing has additional advantages
for subjective classification tasks. First, use of a standardized process
allows no bias from the people that request the tasks. Second, because

each worker is anonymous and is not supervised, more honest answers
are likely to be provided. However, because of this anonymity, it
is more likely that there may be some low-performing workers, or
spammers, that could be a significant source of error [9].

In this paper we use the label set selection approach of [3] as a
starting point, but then consider the problem of assigning workers to
tasks in a situation where workers can provide erroneous labels. We
assume that estimates of the reliability of each worker are available
before we start the worker assignment process. The approach in [3],
based on graph signal processing (GSP) concepts, has promising
performance gains and is based on a metric that quantifies the relative
importance of different data points for approximating the true label
“signal”. In our proposed method, we assign those samples previously
selected to only one worker (i.e., single labeling) depending on that
worker’s reliability. Then, we use the (possibly incorrect) labels given
by the workers to compute estimated labels for unlabeled data using
the iterative distributed algorithm based on projection onto convex
sets (POCS) from [3].

Several approaches have been proposed to address lack of worker
reliability in crowd-sourcing problems. Unlike our proposed method,
these approaches do not restrict themselves to finding one label per
sample [10, 11, 12]. For instance, [10] introduces modifications
to support vector machines in order to make them more robust to
labeling noise, but does not consider that different workers could have
different levels of reliability;[11] uses proactive learning to address
the unreliable labeling problem and similarly considers several types
of unreliable or “non-ideal” workers (e.g., they can fail or be slower),
and chooses between them based on a cost metric, but does not study
how to reduce the effect of unreliable workers as we do; finally [12]
uses active learning as well and estimates both the accuracy of the
workers and the most important samples to label, but assumes that
workload can be adapted (i.e., more work can be requested from the
best workers, while unreliable workers can be discarded). Instead, in
our work we assume a fixed number of workers and a fixed amount of
work, so that we will have a constraint on how much reliable labeling
can be performed.

The main difference between prior work and our proposed
method is that we consider single labeling instead of multiple label-
ing. In a labeling task, the basic decision is whether to label new
samples that have never been labeled or relabel samples. A key
assumption in our work is that we operate in a highly constrained
environment where the total number of labels that we can obtain is
much smaller than the size of the dataset. In this situation, we can
only label a small part of our dataset, and therefore adding more
samples is in general better than relabeling already labeled data
points: As will be seen in our experiments, when the labeled set is
very small reductions in prediction error for each new sample labeled
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is high, while the benefits decrease as the labeled set size increases.
Note that our interpolation algorithms use hard decisions on the
labels for each sample as a starting point. Moreover, we tend to use
“better” workers early in the labeling process. Thus, if the first label
by a better worker is wrong, it would take two additional labels by
less reliable workers to change the labeling decision. This suggests
that obtaining multiple labels per sample may not be as efficient as
labeling new samples.

Papers such as[13] and [14] consider the crowdsourcing problem
with unreliable workers, but do not consider the problem of selecting
which data should be labeled. Methods such as [10, 11, 12] consider
sample selection, but do not take into account the relative importance
of each sample when assigning workers.

Thus, a key contribution of our work is to use both sampling set
selection and optimized worker assignment based on sample impor-
tance and worker reliability. We also challenge the idea that the only
way to reduce the error in crowdsourcing systems is through adding
redundancy by using multiple measurements per sample. Instead we
improve single-label approaches by selecting the samples using active
learning and taking into account the redundancy between samples
with similar features. For active learning we use GSP methods [3],
which give better results than other state-of-the-art methods. To the
best of our knowledge, we are the only ones to consider single label-
ing along with optimized sample selection and worker assignment
in the low-budget regime. Our method shows significant prediction
error reduction independently of the active learning method used.

2. ASSIGNMENT USING THE COVARIANCE DISPERSION
ALGORITHM

2.1. Notation and preliminaries

Let G = (V, E) be a connected, undirected and weighted graph of
size N , where V is the set of nodes and E is the set of edges. If
two nodes have points close to each other in the Euclidean space of
features, then the edge between these two nodes will have a larger
positive weight. In the opposite case, the edge will have low or zero
weight (no edge). A typical example of this would be the Gaussian
kernel weights, which are defined as wij = exp(−||xi− xj ||2/2σ2),
where xi, xj are the feature vectors of data points i and j. If the
distance between xi and xj is small, i.e., the data points are close in
feature space, then the corresponding edge weight wij will be high.

The adjacency matrix W is given by the weights of the edges
between the nodes of the graph. That is, we have that Wij = wij
where wij is the weight of the edge that connects i and j. We
also know that W = W> because the graph is undirected and that
Wii = 0 because there are no self-loops. The degree matrix D is
a diagonal matrix where Dii =

∑N
j=1 wij . The expression of the

Laplacian matrix is L = D − W. The Laplacian matrix can be
shown to be positive and semi-definite. Hence, it has real eigenvalues
0 = λ1 < λ2 ≤ ... ≤ λN with corresponding set of eigenvectors
{u1, u2, ..., uN} and can be written as L = UΛU>, where U =
(u1, u2, ..., uN ) and Λ = diag(λ1, λ2, ..., λN ).

The sets of eigenvalues and eigenvectors of the Laplacian matrix
gives us a notion of frequency in the spectral graph domain. Eigenvec-
tors associated with eigenvalues with low value have similar values
at nodes that are strongly connected, and while variation is greater
when nodes are not strongly connected. Thus, in GSP, low frequency
is related with closeness of values in neighboring nodes and high
frequency would be equivalent to having very different values in
strongly connected nodes. Any graph signal can be projected onto the
basis formed by the eigenvectors of the Laplacian and the resulting

coefficients correspond to the spectral components of the signal. This
projection operation is called Graph Fourier Transform or GFT. See
[15] for a more detailed introduction.

2.2. Gaussian Random Field assumption

We will assume that the vector of class labels associated to the nodes
is generated by thresholding a graph signal generated by a Gaussian
Random Field (GRF). Thus, for a given graph, typical label signals
are likely to be low frequency signals in the graph spectrum. This em-
ulates the cluster-like behavior typical in machine learning problems
and is a reasonable assumption leading to neighboring nodes (data
points) being likely to have the same label.

Let S be the subset of nodes chosen by an active learning algo-
rithm in order to be labeled by workers, and let SC = V\S. Consider
f = (f1, f2, ..., fN )> to be a graph signal generated by a GRF. For
the sake of simplicity, let us assume binary classification and the prior
E{fi} = 0. The probability of obtaining a given graph signal will
then be proportional to:

p(f) ∝ e−f>(L+δI)f = e−f>K−1f, (1)

where K denotes the covariance matrix. In the general case E{fi} 6=
0, we would have to make the substitution fi −→ (fi − E{fi}) in
(1). In multiclass classification, we would have a GRF generated
signal for each of the classes.

As in any other multivariate Gaussian process, here the covari-
ance matrix is given by K = (L + δI)−1 where I is the identity
matrix of size N x N and δ is a real positive scalar with an arbitrarily
small value. It is easy to see that the covariance matrix K has the
same eigenvectors as the Laplacian matrix L but their corresponding
eigenvalues are σi = 1/(λi + δ). The δI term in the covariance
matrix expression is added to avoid having a singular σ1 eigenvalue
(λ1 = 0). Because L is a positive semi-definite, real and symmet-
ric matrix, K and K−1 will be positive definite, real and symmetric
matrices, and thus, by the spectral theorem they are diagonalizable.
Then, the covariance matrix can be written as K = UΣU>, where
Σ = diag(σ1, σ2, ..., σN ).

Assume we have selected a subset of nodes S ⊂ V to be labeled
(different algorithms can be used for this, as will be shown in the
experiments). By simple permutation we can write without loss of
generality f = [f>S f>SC ]>, where fS is the graph signal corresponding
to only the vertices in S. It is well known that, given E{fi} = 0, the
conditional distribution of fSC given fS will be another multivariate
Gaussian [16, 17] with mean µSC |S and covariance matrix KSC |S :

µSC |S = KSCS(KS)+fS (2)

KSC |S = KSC −KSCS(KS)+KSSC (3)

where KSCS denotes the sub-matrix of K with rows indexed by
SC and columns indexed by S and (KS)+ is the Moore-Penrose
pseudoinverse of KS . For simplicity in the notation, KS is equivalent
to KSS . For the general case E{fi} 6= 0, we just have to add a bias
term to the mean µSC |S and to the graph signal fS .

This model gives us a probabilistic interpretation of the interpo-
lated labels, which are the labels we will use for the samples that
have not been labeled. The influence that the choice of S has on the
predicted classes and the uncertainty of each prediction, which is
given by the covariance matrix, is well defined by this model. Each
prediction is given as a Gaussian distribution, where sign(µSC |S)
gives us the most probable combination of positive or negative class
labels for SC . The integral of the multivariate conditional density
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function in one of the 2|S
C | quadrants gives us the probability that

the corresponding particular combination of class labels is correct.

2.3. Covariance dispersion algorithm

We now present the covariance dispersion algorithm (CDA), which
we will use to assign one worker to each node of S efficiently, tak-
ing into account the quality of the workers. Although multiclass
classification follows pretty closely the two class case, for the sake
of simplicity in the notation we will show the CDA only for binary
classification.

We face two problems because of the nature of labeling. First,
the graph signal obtained from labeling the samples of S is not fS ,
but lS = {−1, 1}. Second, the predicted graph signal fSC has to be
thresholded. That is, we have to make a hard decision on the class of
each sample of SC from the graph signal obtained: lSC = sign(fSC ).
The prediction error will be assessed based on lSC , rather than fSC .

We will assume that we are still able to use the GRF model
although we will estimate the prediction error from thresholded labels.
This simplification of using a thresholded signal as if it were the GRF-
generated non-thresholded signal will introduce some error that we
cannot eliminate.

Using the GRF model, in case of no labeling errors, fSC can
be modeled as a normal distribution whose mean µSC |S is obtained
from substituting fS by lS in (2), with its covariance matrix given by
(3). In this case, µSC |S would be the MAP estimation of fSC given
fS . That is, it is the best estimation possible.

Now consider errors in the labeling. Let l̃S = lS−2φS ·lS , be the
noisy labels. φS is a column vector in which each of its components
is a random variable that has Bernoulli distribution valued 1 with
probability εi and 0 with probability (1− εi) with i ⊂ S, where εi is
the probability that the worker assigned to sample i makes a mistake
when labeling. Adding errors shifts the mean of the conditional
normal distribution. The shifted mean will be

µ̃SC |S = KSCS(KS)+lS · (1S − 2φS).

Our objective will be to choose which samples to allocate to the
less reliable workers so that the resulting shifted distribution is as
close as possible to the best estimation. We will measure this close-
ness by calculating the Kullback-Leibler (KL) divergence between
the shifted and original multivariate normal distributions:

DKL =
1

2
(µ̃SC |S − µSC |S)>K−1

SC |S(µ̃SC |S − µSC |S) (4)

The shift between the means is given by:

µ̃SC |S − µSC |S = KSCS(KS)+lS · ((1S − 2φS)− 1S)

= −2KSCS(KS)+φS · lS
(5)

Applying (5) in (4) and using the fact that (lS · φS)2 = φ2
S , we

can make the approximation of substituting φS by εS to obtain the
averaged KL divergence:

D̄KL ≈ 2ε>S (KS)+KSSC K−1
SC |SKSCS(KS)+εS (6)

∇D̄KL ≈ 4ε>S (KS)+KSSC K−1
SC |SKSCS(KS)+ (7)

To minimize the average KL divergence value (6), we use an iterative
process where in each step we compute its gradient (7) and randomly
swap two workers so that we reduce the error in the sample with
bigger gradient.

To sum up, the CDA (see Algorithm 1) allows us to reduce the
KL divergence between the distribution of the graph signal when
there are no labeling errors and our noisy graph signal. We will see
in next section that this reduces significantly the prediction error.

Algorithm 1 Covariance dispersion algorithm

Input: Adjacency matrix W, optimal subset of nodes S, worker
probability errors ε(0)

Output: Optimal assignment of workers ε(numIter)

1: K← createCovarianceMatrix(W)
2: Kc ← createCondCovMatrix(K, S)
3: Q← createQMatrix(K, S)
4: [U,Λ]← getEigenvectors(Kc)
5: for i = 1 : numIter do
6: ε(i) ← swapWorkers(U,Λ,Q, ε(i−1))
7: end for

Time Complexity: O(|SC |3 + |S|2numIter)

3. EXPERIMENTAL RESULTS

To test our previous method we have designed software using Matlab
R2014a. The code is available on GitHub1. The datasets used for
the following experiments are the USPS handwritten digits dataset2

and the Isolet dataset3. Their graphs were constructed using Gaussian
kernel weights, with σ and K fixed accordingly.

To select the subset that best represents the graph (S), given
its size, we have used two different methods: the selection scheme
described in [3], which maximizes the cut-off graph frequency of the
graph signals generated by the subset of nodes chosen, and a simpler
algorithm based on k-medoids [18] that minimizes the mean graph
distance to any node in S.

To predict the graph signal of the subset SC we interpolate the
graph signal that has the values of the worker labels in S and zeros in
the remaining nodes using an iterative algorithm developed in [19]
based on projection onto convex sets (POCS).

3.1. Assignment problem

We simulate and compare the prediction error of the CDA with as-
signing the workers at random and with assigning the best workers
using the sample selection order, for different sized subsets Sn (see
Figure 1). We cannot compare to other baselines because no works
consider optimizing assignment order and we do. The objective is
to obtain insights about the labeling process while also proving that
worker assignment matters.

We have chosen a simple way of modeling the worker behavior.
Any worker i has associated a probability labeling error εi. When that
worker labels any given sample, the probability of giving the correct
class is 1− εi, and in case of error all the wrong classes are equally
probable. Without loss of generality we create as many workers as
samples, and assign each worker to one sample. The parameter εi for
each worker is generated using Beta(2,8) probability density function,
but we obtain similar conclusions for different distributions. We now
proceed to explain the different insights given by the simulations.

First, labeling more samples yields little improvement when
we already have between 8 to 10% of the samples labeled in each
dataset. Of course the point where this effect occurs will depend
on the problem we consider. The reason is that when the signal is
bandlimited with very low cut-off frequency, we only need a small
subset of samples carefully chosen to recover most of the signal
energy as shown in [3], and thus, adding more samples after that

1https://github.com/javier-maroto/
GSP-Noisy-Crowdsourcing

2http://www.cs.nyu.edu/~roweis/data.html
3http://archive.ics.uci.edu/ml/datasets/ISOLET
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(a) (b)

(c) (d)

Fig. 1: Comparison between the prediction error obtained after applying our CDA algorithm, the selection order heuristic and random
assignment when we vary the size of the sampling set. We use the USPS dataset for Figures 1a,1b,1c and the Isolet dataset for Figure 1d.
Additionally, we use a Beta(2,8) worker error distribution in Figures 1a,1c,1d and a heterogeneous distribution of 40% of spammers (p =
0.5) and 60% of hammers (p = 0) in Figure 1b. In Figures 1a,1b we use the GSP-based active learning algorithm and in Figures 1c,1d, the
k-medoids active learning algorithm.

point has almost no effect in our prediction. This supports the idea
that using sampling reduces greatly the error, because most of the
process information is contained in the small subset that has been
carefully selected. Additionally, when we can only manually single
label 3% of the dataset due to budget limitations, it is evident from the
results that relabeling increments greatly the prediction error (because
we have less samples labeled), which supports single labeling against
multi labeling for limited budgets.

Second, changing the error distribution of the group of workers
(Figures 1a, 1b) has almost no impact when we are assigning them
randomly. However, the significance of assignment algorithms like
CDA or the selection order heuristic is greater in heterogeneous
groups. The improvement margin is dependent on the variance of the
worker error distribution.

Third, it is better to use CDA than random assignment for any
size of S, which proves that the minimization of the KL divergence
affects the prediction error. This reduction on prediction error also
proves that there is some gain from the redundancy between samples,
characterized in part by the covariance matrix, which we use as the
starting point in our work. We have to take into account that the CDA
is a greedy algorithm that converges to a local minimum, so there
could be even better assignments.

Fourth, the selection order heuristic is similar or slightly better
to our proposed method when using the active learning algorithm

described in [3] (Figure 1a). When using another selection approach
like the k-medoids method, where the samples are given in order
of importance too, our algorithm greatly outperforms the selection
order heuristic (Figure1c). This shows that not in all active learning
algorithms the first samples selected are always the most important.
In case of using random sampling or other methods that give the
selected samples in a batch, the selection heuristic cannot be applied
so our algorithm is the only option.

Comparing the cost of using the complex selection algorithm
with the selection order heuristic (∼ O(|SC |2|S|)) with using a
faster selection method with using our proposed assignment method
(inverting a matrix, ∼ O(|SC |3), we see that in the case we do not
have S beforehand it is better to use the selection algorithm in [3]
with the selection order heuristic, while in any other case our method
is much more robust.

4. CONCLUSION

We show with this work that efficient assignment improves signif-
icantly the prediction error. We show that our proposed method is
robust to different selection algorithms and gives significant improve-
ment with respect to using nothing, which is the common approach.
When using the selection algorithm given by [3], assigning in order
gives significant improvement.
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